Journal of Mathematical Chemistry

, Volume 54, Issue 3, pp 792–805 | Cite as

On the numerical solution of the general kinetic “K-angle” reaction system

Original Paper

Abstract

In a recent paper by Tobias and Tasi in this journal the authors discuss the “K-angle” kinetic problem and focus on its analytic solution for \(K\le 5\). The authors correctly mention that the case \(K>5\) requires numerical treatment in the part of the procedure where the eigenvalues of the characteristic polynomial are determined by solving an algebraic equation of degree greater than or equal to five. In this work we focus on this algorithmic part by suggesting a suitable and effective numerical procedure. For the sake of simplifying the numerical procedure and to formulate the whole algorithm in an easy programmable way we reformulate the “K-angle” problem by introducing double indices for the reactions between the components. This notation allows to greatly simplify the formulation of the problem and the description of the whole algorithmic procedure and facilitates the creation of appropriate programming tools. We present an example of such a tool, namely a software module named K-angle within the programming environment of CAS Mathematica possessing certain visualization properties.

Keywords

K-angle” reaction Eigenvalues of characteristic equations Weierstrass and Le Verrier methods 

References

  1. 1.
    T. Davis, K. Sigmon, MATLAB Primer, 7th edn. (Chapman and Hall/CRC, Boca Raton, 2005)Google Scholar
  2. 2.
    S. Dimitrov, S. Markov, Metabolic rate constants: some computational aspects. Math. Comput. Simul. (2015). http://www.sciencedirect.com/science/article/pii/S0378475415002529 (in press)
  3. 3.
    A. Hernandes, M. Ruiz, An EXCEL template for calculation of enzyme kinetic parameters by non-linear regression. Bioinformatics (Applications Note) 14, 227–228 (1998)CrossRefGoogle Scholar
  4. 4.
    S. Hoops, S. Sahle, R. Gauges, C. Lee, J. Pahle, N. Simus, M. Singhal, L. Xu, P. Mendes, U. Kummer, COPASI—a complex pathway simulator. Bioinformatics 22, 3067–3074 (2006)CrossRefGoogle Scholar
  5. 5.
    A. Iliev, N. Kyurkchiev, Nontrivial Methods in Numerical Analysis: Selected Topics in Numerical Analysis (LAP LAMBERT Academic Publishing, Saarbrucken, 2010)Google Scholar
  6. 6.
    V. Korobov, V. Ochkov, Chemical Kinetics with Mathcad and Maple (Springer, Wien, 2011)CrossRefGoogle Scholar
  7. 7.
    N. Kyurkchiev, Initial Approximation and Root Finding Methods (WILEY-VCH Verlag Berlin GmbH, Berlin, 1998)Google Scholar
  8. 8.
    N. Kjurkchiev, Some remarks on the Weierstrass root-finding method. C. R. Acad. Bulgar. Sci. 46, 17–20 (1993)Google Scholar
  9. 9.
    N. Kyurkchiev, A note on the Le Verrier-Fadeev’s method. BIT Numer. Math. 35(1), 182–186 (1996)CrossRefGoogle Scholar
  10. 10.
    N. Kyurkchiev, A. Andreev, V. Popov, Iterative methods for the computation of all multiple roots of an algebraic polynomial. Annu. Univ. Sofia, Fac. Math. Mech. 78, 178–185 (1984)Google Scholar
  11. 11.
    N. Kyurkchiev, S. Markov, Two interval methods for algebraic equations with real roots. PLISKA Studia mathematica bulgarica 5, 118–131 (1983)Google Scholar
  12. 12.
    F. Leone, J. Baranauskas, R. Furriel, SigrafW: An easy to use program for fitting enzyme kinetic data. Biochem. Mol. Biol. Educ. 33(6), 399–403 (2005)CrossRefGoogle Scholar
  13. 13.
    M. Mincheva, Oscillations in non-mass action kinetics models of biochemical reaction networks arising from pairs of subnetworks. J. Math. Chem. 50, 1111–1125 (2012). doi:10.1007/s10910-011-9955-8 CrossRefGoogle Scholar
  14. 14.
    S. Nelatury, Ch. Nelatury, M. Vagula, Parameter estimation in different enzyme reactions. Adv. Enzyme Res. 2, 14–26 (2014)CrossRefGoogle Scholar
  15. 15.
    L. Pogliani, M.N. Berberan-Santos, J.M.G. Martinho, Matrix and convolution methods in chemical kinetics. J. Math. Chem. 20, 193–210 (1996)CrossRefGoogle Scholar
  16. 16.
    Bl Sendov, A. Andreev, N. Kyurkchiev, Numerical solution of polynomial equations, in Handbook of Numerical Analysis, vol. III, ed. by P. Ciarlet, J. Lions (Elsevier Science Publ., Amsterdam, 1994)Google Scholar
  17. 17.
    R. Tobias, G. Tasi, Simple algebraic solutions to the kinetic problems of triangle, quandrangle and pentangle reactions. J. Math. Chem. (2015). doi:10.1007/s10910-015-0550-2 Google Scholar
  18. 18.
    K. Weierstrass, Neuer Beweis des Satzes, dass jede ganze rationale Funktion einer Veränderlichen dargestellt werden kann als Produkt linearer Funktionen derselben Veränderlichen. Gez. Werke, Bd. 3 (Mayer and Müller, Leipzig, 1903)Google Scholar
  19. 19.
    P. Williams, ENZPACK: a microcomputer program to aid in the teaching of enzyme kinetics. Biochem. Educ. 11, 141–143 (1983)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Institute of Mathematics and InformaticsBulgarian Academy of SciencesSofiaBulgaria

Personalised recommendations