Skip to main content
Log in

Dimensionality of hypercube clusters

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

We investigate clusters of hypercubes in d-dimensional space as a function of the number of vertices, N, and number of cluster shells, L. The number of links, vertices, and exterior vertices exhibit ‘magic number’ characteristics versus L, as the dimension of the space changes. Starting with only the spatial coordinates, we create an adjacency and distance matrix that facilitates the calculation of topological indices, including the Wiener, hyper-Wiener, reverse Wiener, Szeged, Balaban, and Kirchhoff indices. Some known topological formulas for hypercubes when L = 1 are experimentally verified. The asymptotic limits with N of the topological indices are shown to exhibit power law behavior whose exponent changes with d and type of topological index. The asymptotic graph energy is linear with N, whose slope changes with d, and in 2D agrees numerically with previous calculations. Also, the thermodynamic properties such as entropy, free energy, and enthalpy of these lattices show logarithmic behavior with increasing N. The hypercubic clusters are projected onto 3D space when the dimensionality \(d>3\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. F. Harary, J.P. Hayes, H.Y. Wu, A survey of the theory of hypercube graphs. Comput. Math. Appl. 15(4), 277–289 (1988)

    Article  Google Scholar 

  2. M. Abd-El-Barr, F. Gebali, Reliability analysis and fault tolerance for hypercube multi-computer networks. Inf. Sci. 276, 295–318 (2014)

    Article  Google Scholar 

  3. J.P. Hayes, T. Mudge, Q.F. Stout, S. Colley, J. Palmer, A microprocessor-based hypercube supercomputer. IEEE Micro 6(5), 6–17 (1986)

    Article  Google Scholar 

  4. B.K. Teo, N.J.A. Sloane, Magic numbers in polygonal and polyhedral clusters. Inorg. Chem. 24, 4545–4558 (1985)

    Article  CAS  Google Scholar 

  5. J.M. Montejano-Carrizales, F. Aguilera-Granja, J.L. Moran-Lopez, Direct enumeration of the geometrical characteristics of clusters. Nanostruct. Mater. 8(3), 269–287 (1997)

    Article  CAS  Google Scholar 

  6. Y. Xia, Y. Xiong, B. Lim, S.E. Skrabalak, Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics? Angew. Chem. Int. Ed. 48, 60–103 (2009)

    Article  CAS  Google Scholar 

  7. D.J. Norris, A.L. Efros, S.C. Erwin, Doped nanocrystals. Science 319, 1776–1779 (2008)

    Article  CAS  Google Scholar 

  8. H. Wiener, Structural determination of paraffin boiling points. J. Am. Chem. Soc. 69, 7–20 (1947)

    Google Scholar 

  9. H. Hosoya, Topological index. A newly proposed quantity characterizing the topological nature of structural isomers of saturated hydrocarbons. Bull. Chem. Soc. Jpn. 44, 2332–2339 (1971)

    Article  CAS  Google Scholar 

  10. P. Schwerdtfeger, L. Wirz, J. Avery, Program fullerene: a software package for constructing and analyzing structures of regular fullerenes. J. Comput. Chem. 34, 1508–1526 (2013)

    Article  CAS  Google Scholar 

  11. F.H. Kaatz, A. Bultheel, Informational thermodynamic model for nanostructures. J. Math. Chem. 52(6), 1563–1575 (2014)

    Article  CAS  Google Scholar 

  12. F.H. Kaatz, A. Bultheel, Topological indices for nanoclusters. Comput. Mater. Sci. 99, 73–80 (2015)

    Article  CAS  Google Scholar 

  13. O. Ori, F. Cataldo, D. Vukicevic, A. Graovac, Wiener way to dimensionality. Iran. J. Math. Chem. 1(2), 5–15 (2010)

    Google Scholar 

  14. W. Yan, Z. Zhang, Asymptotic energy of lattices. Phys. A 388, 1463–1471 (2009)

    Article  CAS  Google Scholar 

  15. R. Albert, A.L. Barabasi, Statistical mechanics of complex networks. Rev. Mod. Phys. 74, 47–97 (2002)

    Article  Google Scholar 

  16. J. Park, M.E.J. Newman, Statistical mechanics of networks. Phys. Rev. B. 70, 066117 (2004)

    Article  Google Scholar 

  17. E. Estrada, N. Hatano, Statistical-mechanical approach to subgraph centrality in complex networks. Chem. Phys. Lett. 439, 247–251 (2007)

    Article  CAS  Google Scholar 

  18. W.R. Müller, K. Szymanski, J.V. Knop, N. Trinajstic, An algorithm for construction of the molecular distance matrix. J. Comput. Chem. 8(2), 170–173 (1987)

    Article  Google Scholar 

  19. B. Zhou, N. Trinajstic, Maximum eigenvalues of the reciprocal distance matrix and the reverse Wiener matrix. Inter. J. Quan. Chem. 108, 858–864 (2008)

    Article  CAS  Google Scholar 

  20. I. Gutman, A formula for the Wiener number of trees and its extension to graphs containing cycles. Graph Theory Notes New York 27, 9–15 (1994)

    Google Scholar 

  21. P.W. Fowler, G. Caporossi, P. Hansen, Distance matrices, Wiener indices, and related invariants of fullerenes. J. Phys. Chem. A 105, 6232–6242 (2001)

    Article  CAS  Google Scholar 

  22. P.V. Khadikar, N.V. Deshpande, P.P. Kale, A. Dobrynin, I. Gutman, G. Domotor, The Szeged index and an analogy with the Wiener index. J. Chem. Inf. Comput. Sci. 35, 547–550 (1995)

    Article  CAS  Google Scholar 

  23. S. Klavzar, M.J. Nadjafi-Arani, Wiener index versus Szeged index in networks. Discrte Appl. Math. 161, 1150–1153 (2013)

    Article  Google Scholar 

  24. A.T. Balaban, Highly discriminating distance-based topological index. Chem. Phys. Lett. 89(5), 399–404 (1982)

    Article  CAS  Google Scholar 

  25. A.T. Balaban, Topological indices based on topological distances in molecular graphs. Pure Appl. Chem. 55(2), 199–206 (1983)

    Article  CAS  Google Scholar 

  26. A.T. Balaban, D. Mills, O. Ivanciuc, S.C. Basak, Reverse Wiener indices. Croat. Chem. Acta 73(4), 923–941 (2001)

    Google Scholar 

  27. I. Gutman, B. Mohar, The quasi-Wiener and the Kirchhoff indices coincide. J. Chem. Inf. Comput. Sci. 36, 982–985 (1996)

    Article  CAS  Google Scholar 

  28. S.E. Massen, C.P. Panos, Universal property of the information entropy in atoms, nuclei and atomic clusters. Phys. Lett. A 26, 530–533 (1998)

    Article  Google Scholar 

  29. A. Graovac, T. Pisanski, On the Wiener index of a graph. J. Math. Chem. 8, 53–62 (1991)

    Article  Google Scholar 

  30. M.R. Darafsheh, Computation of topological indices of some graphs. Acta Appl. Math. 110, 1225–1235 (2010)

    Article  Google Scholar 

  31. M. Ghorbani, Remarks on the Balaban Index. Serdica J. Comput. 7(1), 25–34 (2013)

    Google Scholar 

  32. J. Liu, J. Cao, X.F. Pan, A. Elaiw, The Kirchhoff index of hypercubes and related complex networks. Discr. Dyn. Nat. Soc. 1–7. Art. ID 543189 (2013)

  33. S. Daneshvar, G. Izbirak, M.M. Kaleibar, Topological indices of hypercubes. J. Basic Appl. Res. 2(11), 11501–11505 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Forrest H. Kaatz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaatz, F.H., Bultheel, A. Dimensionality of hypercube clusters. J Math Chem 54, 33–43 (2016). https://doi.org/10.1007/s10910-015-0546-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-015-0546-y

Keywords

Mathematics Subject Classification

Navigation