Skip to main content
Log in

Informational thermodynamic model for nanostructures

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

Nanostructures may be fabricated from metal nanoclusters such as gold or platinum, which are of interest for catalytic and structural characteristics, or from nano forms of carbon allotropes. Here, informational thermodynamic properties such as free energy, enthalpy, and entropy are calculated using a graph network model at T = 298.15 K. We calculate the partition function using Euclidean adjacency matrices from the Hamiltonian and estimated bond energies. The summed atomic displacement from the Kirchhoff index has power law behavior, while the thermodynamic properties exhibit large \(N\) logarithmic behavior: however, the data shows structurally related anomalies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. J. Gong, Chem. Rev. 112, 2987–3054 (2012)

    Article  CAS  Google Scholar 

  2. W. Zhou, J. Wu, H. Yang, Nano. Lett. 13, 2870–2874 (2013)

    Article  CAS  Google Scholar 

  3. B.K. Teo, N.J.A. Sloane, Inorg. Chem. 24, 4545–4558 (1985)

    Article  CAS  Google Scholar 

  4. J.M. Montejano-Carrizales, F. Aguilera-Granja, J.L. Moran-Lopez, NanoStructured Mater. 8(3), 269–287 (1997)

    Article  CAS  Google Scholar 

  5. F. Kim, S. Connor, H. Song, T. Kuykendall, P. Yang, Angew. Chem. 116, 3673–3677 (2004)

    Article  Google Scholar 

  6. K. Koga, T. Ikeshoji, K. Sugawara, Phys. Rev. Lett. 92(11), 15507 (2004)

    Article  Google Scholar 

  7. S.W. Lu, V. Frain, M. Arbab, J. Phys. Chem. C 114, 12850–12854 (2010)

    Article  CAS  Google Scholar 

  8. K. Koga, K. Sugawara, Surf. Sci. 529, 23–35 (2003)

    Article  CAS  Google Scholar 

  9. Y. Li et al., J. Am. Chem. Soc. 134, 17997–18003 (2012)

    Article  CAS  Google Scholar 

  10. A. Sanchez-Iglesias, I. Pastoriza-Santos, J. Perez-Juste, B. Rodriguez-Gonzalez, F. Javier, F.J. Garcia de Abajo, L.M. Liz-Marzan, Adv. Mater. 18, 2529–2534 (2006)

    Article  CAS  Google Scholar 

  11. W. Zhu, A.-X. Yin, Y.-W. Zhang, C.-H. Yan, Chem. Eur. J. 18, 12222–12226 (2012)

    Article  CAS  Google Scholar 

  12. K.M. Bratlie, H. Lee, K. Komvopoulos, P. Yang, G.A. Somorjai, Nano Lett. 7(10), 3097–3101 (2007)

    Article  CAS  Google Scholar 

  13. C.M. Sanchez-Sanchez, J. Solla-Gullon, F.J. Vidal-Iglesias, A. Aldaz, V. Montiel, E. Herrero, J. Am. Chem. Soc. 132, 5622–5624 (2010)

    Article  CAS  Google Scholar 

  14. Y.H. Chui, G. Grochola, I.K. Snook, S.P. Russo, Phys. Rev. B 75, 033404 (2007)

    Article  Google Scholar 

  15. H. Akbarzadeh, G.A. Parsafar, Fluid Phase Equilib. 280, 16–21 (2009)

    Article  CAS  Google Scholar 

  16. J.L. Delgado, M.A. Herranz, N. Martin, J. Mater. Chem. 18, 1417–1426 (2008)

    Article  CAS  Google Scholar 

  17. H.W. Kroto, J.R. Heath, S.C. O’Brien, R.F. Curl, R.E. Smalley, Nature 318, 162–163 (1985)

    Article  CAS  Google Scholar 

  18. S. Iijima, Nature 354, 56–58 (1991)

    Article  CAS  Google Scholar 

  19. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 306, 666–669 (2004)

    Article  CAS  Google Scholar 

  20. W. Gordy, J. Chem. Phys. 15(5), 305–310 (1947)

    Article  CAS  Google Scholar 

  21. J.P. Paolini, J. Comput. Chem. 11(10), 1160–1163 (1990)

    Article  CAS  Google Scholar 

  22. L. Pauling, J. Phys. Chem. 58(8), 662–666 (1954)

    Article  CAS  Google Scholar 

  23. R.C. Powles, N.A. Marks, D.W.M. Lau, Phys. Rev. B 79, 075430 (2009)

    Google Scholar 

  24. Y. Yamaguchi, L. Colombo, P. Piseri, L. Ravagnan, P. Milani, Phys. Rev. B 76, 134119 (2007)

    Google Scholar 

  25. P.J.F. Harris, Carbon 45, 229–239 (2007)

    Article  CAS  Google Scholar 

  26. B.V. Lebedev, K.B. Zhogova, T.A. Bykova, B.S. Kaverin, V.L. Karnatsevich, M.A. Lopatin, Russ. Chem. Bull. 45(9), 2113–2117 (1996)

    Article  Google Scholar 

  27. V.B. Muratov, O.O. Vasil’ev, L.M. Kulikov, V.V. Garbuz, Yu.V. Nesterenko, T.I. Duda, J. Superhard Mater. 34(3), 173–178 (2012)

    Google Scholar 

  28. E. Estrada, N. Hatano, Chem. Phys. Lett. 439, 247–251 (2007)

    Article  CAS  Google Scholar 

  29. M. Backman, N. Juslin, K. Nordlund, Eur. Phys. J. B 85, 317–322 (2012)

    Article  Google Scholar 

  30. K. Albe, K. Nordlund, R.S. Averback, Phys. Rev. B 65, 195124 (2002)

    Article  Google Scholar 

  31. J.E. Hearn, R.L. Johnston, J. Chem Phys. 107, 4674–4687 (1997)

    Article  CAS  Google Scholar 

  32. M. Alcami, G. Sanchez, S. Diaz-Tendero, Y. Wang, F. Martin, J. Nanosci. Nantechnol. 7, 1329–1338 (2007)

    Article  CAS  Google Scholar 

  33. W.H. Qi, M.P. Wang, J. Nanoparticle Res. 7, 51–57 (2005)

    Article  CAS  Google Scholar 

  34. J.T. Miller, A.J. Kropf, Y. Zha, J.R. Regalbuto, L. Delannoy, C. Louis, E. Bus, J.A. von Bokhoven, J. Catal. 240, 222–234 (2006)

    Article  CAS  Google Scholar 

  35. M. Klimenkov, S. Nepijko, H. Kuhlenbeck, M. Baumer, R. Schlogl, H.-J. Freund, Surf. Sci. 391, 27–36 (1997)

    Article  CAS  Google Scholar 

  36. S.E. Massen, C.P. Panos, Phys. Lett. A 26, 530–533 (1998)

    Article  Google Scholar 

  37. E. Estrada, N. Hatano, Chem. Phys. Lett. 486, 166–170 (2010)

    Article  CAS  Google Scholar 

  38. I. Gutman, B. Mohar, J. Chem. Inf. Comput. Sci. 36, 982–985 (1996)

    Article  CAS  Google Scholar 

  39. J.R. Lombardi, B. Davis, Chem. Rev. 102, 2431–2460 (2002)

    Article  CAS  Google Scholar 

  40. K. Kern, R. David, R.L. Palmer, G. Comsa, T.S. Rahman, Phys. Rev. B 33(6), 4334–4337 (1986)

    Article  CAS  Google Scholar 

  41. S.Y. Davydov, Phys. Solid State 52, 1947–1951 (2010)

    Article  CAS  Google Scholar 

  42. W.I.F. David, R.M. Ibberson, J.C. Mathewman, K. Prassides, T.J.S. Dennis, J.P. Hare, H.W. Kroto, R. Taylor, D.R.W. Walton, Nature 353, 147–149 (1991)

    Article  CAS  Google Scholar 

  43. S.R. Gadre, Phys. Rev. A 30(1), 620–621 (1984)

    Article  Google Scholar 

  44. W. Kratschmer, L.D. Lamb, K. Fostiropoulos, D.R. Huffman, Nature 347, 354–358 (1990)

    Article  Google Scholar 

  45. F.H. Kaatz, M.P. Siegal, D.L. Overmyer, P.P. Provencio, D.R. Tallant, Appl. Phys. Lett. 89, 241915 (2006)

    Article  Google Scholar 

  46. A.S. Barnard, N.P. Young, A.I. Kirkland, M.A. van Huls, H. Xu, ACS Nano 3(6), 1431–1436 (2009)

    Article  CAS  Google Scholar 

  47. A.S. Barnard, H. Konishi, H.F. Xu, Catal. Sci. Technol. 1, 1440–1448 (2011)

    Article  CAS  Google Scholar 

  48. F.H. Kaatz, A. Bultheel, J. Math. Chem. 51, 1211–1220 (2013)

    Article  CAS  Google Scholar 

  49. F.H. Kaatz, A. Bultheel, J. Math. Chem. 51, 1221–1230 (2013)

    Article  CAS  Google Scholar 

  50. F.H. Kaatz, E. Estrada, A. Bultheel, N. Sharrock, Phys. A 391, 2957–2963 (2012)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

F. H. Kaatz thanks A. Fasolino for sharing atomic coordinates of rippled graphene, and thanks E. Estrada for programming assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Forrest H. Kaatz.

Appendix

Appendix

We recently published some results describing power law behavior with the thermodynamic properties [4850]. We now show that these power law relationships are equivalent to the logarithmic properties shown in this manuscript.

Suppose the thermodynamic property is \(P\) and we consider

$$\begin{aligned} \frac{P}{N_B }=\frac{A+B\ln (N)}{cN} \end{aligned}$$
(14)

where \(N_{B}\) is the number of bonds and \(A\), \(B\), and \(c\) are constants with \(N_{B}\) = cN. We then have

$$\begin{aligned} N=cN-(c-1)N=cN\left( {1-\frac{c-1}{c}} \right) \end{aligned}$$
(15)

and thus

$$\begin{aligned} \ln (N)=\ln (cN)+\ln \left( {1-\frac{c-1}{c}} \right) . \end{aligned}$$
(16)

If we use this expression in Eq. (14), we have

$$\begin{aligned} \frac{P}{N_B }=\frac{A}{cN}+B\frac{\ln (cN)}{cN}+B\frac{\ln \left( {1+\frac{c-1}{c}} \right) }{cN}=\frac{A+B\ln \left( {\frac{2c-1}{c}} \right) }{cN}+B\frac{\ln (cN)}{cN}.\qquad \end{aligned}$$
(17)

Now both terms on the right go to zero as \(N\) \(\rightarrow \) \(\infty \), but the first one is faster than the second one. Hence for large N, the dominant term is BN \(_{B}^{-1}\) ln (\(N_{B})\). Because ln (\(N_{B})\) \(<\) (\(N_{B})^{\alpha }\) for \(N\) \(\rightarrow \) \(\infty \) and \(\alpha \) \(>\) 0, we shall have the result we are intending to prove

$$\begin{aligned} \frac{P}{N_B }\sim B(N_B )^{-1+\alpha },N\rightarrow \infty ,\alpha >0, \end{aligned}$$
(18)

and the original expression for \(P\) (Eq. 14) shows the logarithmic behavior.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaatz, F.H., Bultheel, A. Informational thermodynamic model for nanostructures. J Math Chem 52, 1563–1575 (2014). https://doi.org/10.1007/s10910-014-0336-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-014-0336-y

Keywords

Navigation