Skip to main content
Log in

Delay induced oscillations in a turbidostat with feedback control

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

A model of competition between two species in a turbidostat with delayed feedback control is investigated. By choosing the delay in the measurement of the optical sensor to the turbidity of the fluid as a bifurcation parameter, we show that Hopf bifurcations can occur as the delay crosses some critical values. The direction and stability of the bifurcating periodic solutions are determined by the normal form theory and the center manifold theorem. Computer simulations illustrate the results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Egli, in The ecology and physiological significance of the growth of heterotrophic microorganisms with mixtures of substrates, ed. by G Jones Advances in Microbial Ecology, vol. 14 (Plenum Press, New York, 1995), pp. 305–386

  2. Herbert D., Elsworth R., Telling R.C.: The continuous culture of bacteria a theoretical and experimental study. J. Gen. Microbiol. 14, 60l–622 (1956)

    Google Scholar 

  3. Novick A., Sziliard L.: Description of the chemostat. Science 112, 715–716 (1950)

    Article  CAS  Google Scholar 

  4. Smith H., Waltman P.: The Theory of the Chemostat. Cambridge University Press, Cambridge, UK (1995)

    Book  Google Scholar 

  5. Taylor P.A., Williams J.L.: Theoretical studies on the coexistence of competing species under continuous-flow conditions. Can. J. Microbiol. 21, 90–98 (1975)

    Article  CAS  Google Scholar 

  6. Armstrong R.A., McGehee R.: Competitive exclusion. Am. Natur. 115, 151–170 (1980)

    Article  Google Scholar 

  7. Butler G.J., Wolkowicz G.S.K.: A mathematical model of the chemostat with a general class of functions describing nutrient uptake. SIAM J. Appl. Math. 45, 138–151 (1985)

    Article  Google Scholar 

  8. Hsu S.B.: Limiting behavior for competing species. SIAM J. Appl. Math. 34, 760–763 (1978)

    Article  Google Scholar 

  9. Hsu S.B., Hubbell S., Waltman P.: A mathematical theory of single-nutrient competition in continuous cultures of micro-organisms. SIAM J. Appl. Math. 32, 366–383 (1977)

    Article  Google Scholar 

  10. Li B.: Global asymptotic behaviour of the chemostat: general response functions and different removal rates. SIAM J. Appl. Math. 59, 411–422 (1999)

    Article  Google Scholar 

  11. Wolkowicz G.S.K., Lu Z.: Global dynamics of a mathematical model of competition in the chemostat: general response function and differential death rates, SIAM J. Appl. Math. 52, 222–233 (1992)

    Google Scholar 

  12. B. Li (1998) Analysis of Chemostat-Related Models With Distinct Removal Rates. Ph.D thesis, Arizona State University

  13. Wolkowicz G.S.K., Xia H.: Global asymptotic behavior of a chemostat model with discrete delays. SIAM J. Appl. Math. 57, 1019–1043 (1997)

    Article  Google Scholar 

  14. Wolkowicz G.S.K., Xia H., Ruan S.: Competition in the chemostat:a distributed delay model and its global asymptotic behavior. SIAM J. Appl. Math. 57, 1281–1310 (1997)

    Article  Google Scholar 

  15. Grover J.P.: Resource Competition. Chapman Hal, London (1997)

    Book  Google Scholar 

  16. Hansen S.R., Hubbell S.P.: Single-nutrient microbial competition: agreement between experimental and theoretical forecast outcomes. Science 207, 1491–1493 (1980)

    Article  CAS  Google Scholar 

  17. Tilman D.: Resource Competition and Community Structure. Princeton U.P., Princeton (1982)

    Google Scholar 

  18. De Leenheer P., Smith H.L.: Feedback control for the chemostat. J. Math. Biol. 46, 48–70 (2003)

    Article  Google Scholar 

  19. Flegr J.: Two distinct types of natural selection in turbidostat-like and chemostat-like ecosystems. J. Theor. Biol. 188, 121–126 (1997)

    Article  Google Scholar 

  20. Li B.: Competition in a turbidostat for an inhibitory nutrient. J. Biol. Dyn. 2, 208–220 (2008)

    Article  Google Scholar 

  21. Yuan S., Zhang W., Han M.: Global asymptotic behavior in chemostat-type competition models with delay. Nonlinear Anal. Real World Appl. 10, 1305–1320 (2009)

    Article  Google Scholar 

  22. Panikov N.S: Microbial Growth Kinetics. Chapman Hall, New York (1995)

    Google Scholar 

  23. Shuler M.L., Kargi F.: Bioprocess Engineering Basic Concepts. Prentice Hall, Englewood Cliffs (1992)

    Google Scholar 

  24. Gopalsamy K.: Stability and Oscillations in Delay Differential Equations of Population Dynamics. Kluwer Academic Publishers, Boston (1992)

    Google Scholar 

  25. Hale J., Lunel S.: Introduction to Functional Differential Equations. Springer, New York (1993)

    Google Scholar 

  26. Kuang Y.: Delay Differential Equations with Applications in Population Dynamics. Academic Press, Boston (1993)

    Google Scholar 

  27. Hassard B.D., Kazarinoff N.D., Wan Y.H.: Theory and Applications of Hopf Bifurcation. Cambridge University Press, Cambridge (1981)

    Google Scholar 

  28. Zhao Z., Wang T., Chen L.: Dynamic analysis of a turbidostat model with the feedback control. Comm. Nonlinear Sci. Numer. Simul. 15, 1028–1035 (2010)

    Article  Google Scholar 

  29. Bulter G.J., Hsu S.B., Waltman P.: A mathematical model of the chemostat with periodic washout rate. SIAM J. Appl. Math. 45, 435–449 (1985)

    Article  Google Scholar 

  30. Hsu S.B.: A competition model for a seasonally fluctuating nutrient. J. Math. Biol. 9, 115–132 (1980)

    Article  Google Scholar 

  31. Smith H.L.: Monotone Dynamical System. AMS, Providence (1995)

    Google Scholar 

  32. Hale J.K., Somolinas A.S.: Competition for fluctuating nutrient. J. Math. Biol. 18, 255–280 (1983)

    Article  Google Scholar 

  33. Stephanopoulos G., Fredrickson A.G.: Effect of spatial inhomogeneities on the coexistence of competing microbial populations. Biotech. Bioeng. XXI, 1491–1498 (1979)

    Article  Google Scholar 

  34. Cantrell R.S., Cosner C., Ruan S.: Intraspecific interference and consumer-resource dynamics. Discret. Contin. Dyn. Syst. 4, 527–546 (2004)

    Article  Google Scholar 

  35. Meng X., Li Z., Nieto J.J.: Dynamic analysis of Michaelis-Menten chemostat-type competition models with time delay and pulse in a polluted environment. J. Math. Chem. 47, 123–144 (2010)

    Article  CAS  Google Scholar 

  36. Zhao Z., Yang L., Chen L.: Impulsive state feedback control of the microorganism culture in a turbidostat. J. Math. Chem. 47, 1224–1239 (2010)

    Article  CAS  Google Scholar 

  37. Zhang H., Georgescu P., Nieto J.J., Chen L.: Impulsive perturbation and bifurcation of solutions for a model of chemostat with variable yield. Appl. Math. Mech. (English Ed.) 30, 933–944 (2009)

    Article  Google Scholar 

  38. Stephanopoulos G., Fredrickson A.G., Aris R.: The growth of competing microbial populations in CSTR with periodically varying inputs. Am. Inst. Chem. Eng. J. 25, 863–872 (1979)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanling Yuan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yuan, S., Li, P. & Song, Y. Delay induced oscillations in a turbidostat with feedback control. J Math Chem 49, 1646–1666 (2011). https://doi.org/10.1007/s10910-011-9848-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-011-9848-x

Keywords

Navigation