Skip to main content
Log in

Numerical solution of ordinary differential equations by Fluctuationlessness theorem

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

This paper presents a numerical method based on Fluctuationlessness Theorem for the solution of Ordinary Differential Equations over appropriately defined Hilbert Spaces. We focus on the linear differential equations in this work. The approximated solution is written in the form of an nth degree polynomial of the independent variable. The unknown coefficients are obtained by setting up a system of linear equations which satisfy the initial or boundary conditions and the differential equation at the grid points, which are constructed as the independent variable’s matrix representation restricted to an n dimensional subspace of the Hilbert Space. An error comparison of the numerical solution and the MacLaurin series with the analytical solution is performed. The results show that the numerical solution obtained here converges to the analytical solution without using too many mesh points.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dreyer T.P.: Modelling with Ordinary Differential Equations. CRC Press, Florida (1993)

    Google Scholar 

  2. Boyce W.E., DiPrima R.C.: Elementary Differential Equations and Boundary Value Problems. Wiley, New York (2004)

    Google Scholar 

  3. Burden R.L., Faires J.D.: Numerical Analysis. Thomson Brooks/Cole, Belmont, CA (2005)

    Google Scholar 

  4. Butcher J.C.: Numerical Methods for Ordinary Differential Equations. Wiley, West Sussex, England (2003)

    Book  Google Scholar 

  5. Kincald D., Cheney W.: Numerical Analysis-Mathematics of Scientific Computing, 3rd edn. Brooks/Cole, Boston, MA (2002)

    Google Scholar 

  6. Schatzman M.: Numerical Analysis: A Mathematical Introduction. Clarendon Press, Oxford (2002)

    Google Scholar 

  7. Forsythe G.E., Malcolm M.A., Moler C.B.: Computer Methods for Mathematical Computations. Prentice-Hall, Englewood Cliffs, NJ (1977)

    Google Scholar 

  8. Atkinson K.A.: An Introduction to Numerical Analysis, 2nd edn. Wiley, New York (1989)

    Google Scholar 

  9. Ko K.: Inf. Control 58, 157 (1984)

    Article  Google Scholar 

  10. Demiralp M., Rabitz H.: Phys. Rev. A 47, 809 (1993)

    Article  CAS  Google Scholar 

  11. Demiralp M., Rabitz H.: Phys. Rev. A 47, 831 (1993)

    Article  CAS  Google Scholar 

  12. Demiralp M., Rabitz H.: Phys. Rev. A 55, 673 (1997)

    Article  CAS  Google Scholar 

  13. Demiralp M., Rabitz H.: Phys. Rev. A 57, 2420 (1998)

    Article  CAS  Google Scholar 

  14. Demiralp M., Rabitz H.: Phys. Rev. A 61, 2569 (2000)

    CAS  Google Scholar 

  15. Rabitz H., Ho T.-S., Hsieh M., Kosut R., Demiralp M.: Phys. Rev. A 74, 12721 (2006)

    Article  Google Scholar 

  16. Zwanzig R.: Nonequilibrium Statistical Mechanics. Oxford University Press, New York (2001)

    Google Scholar 

  17. Demiralp M., Rabitz H.: J. Math. Chem 16, 185 (1994)

    Article  CAS  Google Scholar 

  18. Demiralp M., Rabitz H.: J. Math. Chem 19, 337 (1995)

    Article  Google Scholar 

  19. O’Connell R.F.: Int. J. Quantum Chem 58, 569 (1995)

    Article  Google Scholar 

  20. M. Demiralp, J. Math. Chem., doi:10.1007/s10910-009-9533-5

  21. Demiralp M.: WSEAS Trans. Math. 6, 258 (2009)

    Google Scholar 

  22. M. Demiralp, Proc. Int. Conf. Numer. Anal. Appl. Math. 711, (2005)

  23. N. Altay, M. Demiralp, Proc. 1st WSEAS Int. Conf. Multivar. Anal. Appl. Sci. Eng. 162, (2008)

  24. N. Altay, M. Demiralp, Proc. Int. Conf. Numer. Anal. Appl. Math. 52 (2008)

  25. N. Altay, M. Demiralp, WSEAS Trans. Math. 199 (2009)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nejla Altay.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Altay, N., Demiralp, M. Numerical solution of ordinary differential equations by Fluctuationlessness theorem. J Math Chem 47, 1323–1343 (2010). https://doi.org/10.1007/s10910-009-9657-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-009-9657-7

Keywords

Navigation