Skip to main content
Log in

Upper and lower bounds on the control field and the quality of achieved optimally controlled quantum molecular motion

  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

A large class of problems in optimally controlled quantum or classical molecular dynamics has multiple solutions for the control field amplitude. A denumerably infinite number of solutions may exist depending on the structure of the design cost functional. This fact has been recently proved with the aid of perturbation theory by considering the electric field as the perturbating agent. In carrying out this analysis, an eigenvalue (i.e., a spectral parameter) appears which gives the degree of deviation of the control objective from its desired value. In this work, we develop a scheme to construct upper and lower bounds for the field amplitude and spectral parameter for each member of the denumerably infinite set of control solutions. The bounds can be tightened if desired. The analysis here is primarily restricted to the weak field regime, although the bounds for the strong field nonlinear case are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aa.S. Sudbø, P.A. Schulz, E.R. Grant, Y.R. Shen and Y.T. Lee, J. Chem. Phys. 70 (1979) 912.

    Google Scholar 

  2. J.M. Jasinski, J.K. Frisch and C.B. Moore, Faraday Discuss. Chem. Soc. 75 (1983) 289.

    Google Scholar 

  3. G. Huang, T. Tarn and J. Clark, J. Math. Phys. 24 (1983) 2608.

    Google Scholar 

  4. A.H. Zewail and N. Bloembergen, J. Phys. Chem. 88 (1984) 5459.

    Google Scholar 

  5. D.J. Tannor and S.A. Rice, J. Chem. Phys. 83 (1985) 5013; Adv. Chem. Phys. 70 (1987);

    Google Scholar 

  6. S.A. Rice and D.J. Tannor, J. Chem. Soc. Faraday Trans. 82 (1986) 2423.

    Google Scholar 

  7. M. Shapiro and P. Brumer, J. Chem. Phys. 84 (1986) 4103; P. Brumer and M. Shapiro, Chem. Phys. Lett. 126 (1986) 54.

    Google Scholar 

  8. T.A. Holme and J.S. Hutchinson, Chem. Phys. Lett. 124 (1986) 181; J. Chem. Phys. 86 (1987) 42.

    Google Scholar 

  9. S. Shi, A. Woody and H. Rabitz, J. Chem. Phys. 88 (1988) 6870.

    Google Scholar 

  10. R. Kosloff, S. Rice, P. Gaspard, S. Tersigni and D. Tannor, Chem. Phys. 139 (1989) 201.

    Google Scholar 

  11. J. Manz, J. Chem. Phys. 91 (1989) 2190.

    Google Scholar 

  12. C. Chen and D.S. Elliot, Phys. Rev. Lett. 65 (1990) 1737.

    PubMed  Google Scholar 

  13. J.G.B. Beumee and H. Rabitz, J. Math. Phys. 31 (1990) 1253.

    Google Scholar 

  14. S. Shi and H. Rabitz, J. Chem. Phys. 92 (1990) 364.

    Google Scholar 

  15. S. Shi and H. Rabitz, J. Chem. Phys. 92 (1990) 2927.

    Google Scholar 

  16. M. Dahleh, A.P. Peirce and H. Rabitz, Phys. Rev. A42 (1990) 1065.

    Google Scholar 

  17. C.D. Schwieters, J.G.B. Beumee and H. Rabitz, J. Opt. Soc. Amer. B7 (1990) 1736.

    Google Scholar 

  18. K. Yao, S. Shi and H. Rabitz, Chem. Phys. 150 (1990) 373.

    Google Scholar 

  19. S. Shi and H. Rabitz, Comp. Phys. Comm. 63 (1991) 71.

    Google Scholar 

  20. L. Shen and H. Rabitz, J. Phys. Chem. 95 (1991) 1047.

    Google Scholar 

  21. P. Gross, D. Neuhauser and H. Rabitz, J. Chem. Phys. 94 (1991) 1158.

    Google Scholar 

  22. H. Rabitz and S. Shi, Adv. Mol. Vibr. and Coll. Dyn. (ed. Joel Bowman) 1-A (1991) 187.

    Google Scholar 

  23. C.D. Schwieters and H. Rabitz, Phys. Rev. A44 (1991) 5224.

    Google Scholar 

  24. Y.S. Kim, H. Rabitz, A. A§kar and J.B. McManus, Phys. Rev. B44 (1991) 4892.

    Google Scholar 

  25. P. Gross, D. Neuhauser and H. Rabitz, J. Chem. Phys. 96 (1992) 2834.

    Google Scholar 

  26. M. Demiralp and H. Rabitz, Phys. Rev. A47 (1993) 809.

    Google Scholar 

  27. M. Demiralp and H. Rabitz, Phys. Rev. A47 (1993) 831.

    Google Scholar 

  28. M. Demiralp and H. Rabitz, J. Math. Chem. 16 (1994) 185.

    Google Scholar 

  29. J.L. Krause, R.M. Whitnell, K.R. Wilson. Y.J. Yan and S. Mukamel, J. Chem. Phys. 99 (1993) 277.

    Google Scholar 

  30. P.-O. Löwdin, in:Perturbation Theory and Its Application in Quantum Mechanics, ed. C. H. Wilcox (Wiley, New York, 1966).

    Google Scholar 

  31. A. Weinstein,Proc. Int. Conf, on Partial Differential Equations and Continuum Mechanics, No. 5, Univ. of Wisconsin, Madison, WI (1961).

    Google Scholar 

  32. B. Simon, Ann. Phys. 58 (1970) 76.

    Google Scholar 

  33. D. Grau, Int. J. Quant. Chem. 11 (1977) 931.

    Google Scholar 

  34. B. Simon, Int. J. Quant. Chem. 21 (1982) 3.

    Google Scholar 

  35. M. Demiralp, J. Math. Phys. 24 (1983) 101.

    Google Scholar 

  36. N. Ari and M. Demiralp, J. Math. Phys. 26 (1985) 1179.

    Google Scholar 

  37. G.A. Baker, Jr.,Essentials of Padé Approximants (Academic Press, New York, 1975).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Demiralp, M., Rabitz, H. Upper and lower bounds on the control field and the quality of achieved optimally controlled quantum molecular motion. J Math Chem 19, 337–352 (1996). https://doi.org/10.1007/BF01166724

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01166724

Keywords

Navigation