Skip to main content
Log in

Competition in a chemostat with Beddington–DeAngelis growth rates and periodic pulsed nutrient

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

A system of impulsive differential equations is considered as a model of two populations competing for a pulsed inputting nutrient with Beddington–DeAngelis growth rates. Criteria are derived for the coexistence or non-coexistence of the competing species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hale J.K., Somolinos A.S. (1983) Competition for fluctuating nutrient. J. Math. Biol. 18:255–280

    Article  Google Scholar 

  2. Hsu S.B. (1980) A competition model for a seasonally fluctuating nutrient. J. Math. Biol. 18:115–132

    Article  Google Scholar 

  3. Alessandra G., Oscar D.F., Sergio R. (1998) Food chains in the chemostat: relationships between mean yield and complex dynamics. Bull. Math. Biol. 60:703–719

    Article  Google Scholar 

  4. Mark Kor G.S., Sayler T.W., Waltman (1992) Complex dynamics in a model microbial system. Bull. Math. Biol. 54, 619–648

    Google Scholar 

  5. Eric Funasaki, Mark Kor (1993) Invasion and chaos in periodically pulsed mass-action chemostat. Theor. Popul. Biol. 44:203–224

    Article  Google Scholar 

  6. Butler G.J., Hsu S.B., Waltman P. (1985) A mathematical model of the chemostat with periodic washout rate. SIAM J. Appl. Math. 45: 435–449

    Article  Google Scholar 

  7. Lenas P., Pavlou S. (1995) Coexistence of three competing microbial populations in a chemostat with periodically varying dilution rate. Math. Biosci. 129:111–142

    Article  CAS  Google Scholar 

  8. DeAnglis D.L., Goldstein R.A., O’Neill R.V. (1975) A model for trophic interaction. Ecology 56:881–892

    Article  Google Scholar 

  9. Beddington J.R. (1975) Mutual interference between parasites or predators and its effect on searching efficiency. J. Anim. Ecol. 44: 331–340

    Article  Google Scholar 

  10. D. Bainov, P. Simeonor, Impulsive differential equations: periodic solutions and applications. Pitman Monogr. Surr. Pure Appl. Math. 66 (1993)

  11. V. Laksmikantham, D.D. Bainov, P.S. Simeonov, Theory of Impulsive Differential Equations. World Scientific Singapore (1989)

  12. Tang S.Y., Chen L.S. (2002) Density-dependent birth rate, birth pulse and their population dynamic consequences. J. Math. Biol. 44:185–199

    Article  Google Scholar 

  13. Ballinger G., Liu X. (1997) Permanence of population growth models with impulsive effects. Math. Comput. Model. 26:59–72

    Article  Google Scholar 

  14. Shulgin B., Stone L. (1998) Agur I., Pulse Vaccination strategy in the SIR epidemic model. Bull. Math. Biol. 60:1–26

    Article  Google Scholar 

  15. D’Onofrio A. (2002) Stabil1ty properties of pulse vaccination strategy in the SIR epidemic model. Bull. Math. Biol. 60:1–26

    Google Scholar 

  16. Panetta J.C. (1996) A mathematical model of periodically pulsed chemotherapy: tumor recurrence and metastasis in a competition environment. Bull. Math. Biol. 58:425–447

    Article  CAS  Google Scholar 

  17. Wang F., Zhang S., Chen L., Sun L. (2005) Permanence and complexity of a three species food chain with impulsive effect on the top predator. Int. J. Nonlinear Sci. Num. Simul. 6(2):169–180

    Google Scholar 

  18. Coddington E.A., Levinson N. (1955) Theory of Ordinary Differential Equations. McGraw-Hill, New York

    Google Scholar 

  19. Kelley J.L. (1955) General Topology. Van Nostrand, New York

    Google Scholar 

  20. J.K. Hale, Asymptotic Behavior of Dissipative Systems, Mathematical Surveys and Monographs, vol. 25 (American Mathematical Society, Providence, RI, 1988)

  21. Hale J.K., Waltman P. (1989) Persistence in infinite-dimensional systems. SIAM J. Math. Anal. 20:388–395

    Article  Google Scholar 

  22. Dancer E.N. (1986) Multiple fixed points of positive maps. J. Reine Angew. Math. 37:46–66

    Google Scholar 

  23. Dancer E.N. (1983) On the indices of fixed points of mappings in cones and applications. J. Math. Anal. Appl. 91:131–151

    Article  Google Scholar 

  24. Li L. (1988) Coexistence theorems of steady-states for predator-prey interacting systems. Trans. Amer. Math. Soc. 305:143–166

    Article  Google Scholar 

  25. Li L. (1989) On the uniqueness and ordering of steady-states of predator-prey systems. Proc. Roy. Soc. Edinburgh. 110:295–303

    Google Scholar 

  26. Dancer E.N., Du Y. (1995) Positive solutions for a three-species competition system with diffusion-I. General existence results, Nonlin. Anal. TMA 24:337–357

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fengyan Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, F., Pang, G. Competition in a chemostat with Beddington–DeAngelis growth rates and periodic pulsed nutrient. J Math Chem 44, 691–710 (2008). https://doi.org/10.1007/s10910-008-9346-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-008-9346-y

Keywords

Navigation