Skip to main content
Log in

An experimental study on the heat transfer and pressure drop characteristics of electronics cooling heat sinks with FC-72 flow boiling

  • Published:
Journal of Mechanical Science and Technology Aims and scope Submit manuscript

Abstract

An experimental study was performed to measure FC-72(C6F14) flow boiling heat transfer and pressure drop in heat sinks for electronics cooling. The heat sink had cooling cross section area of 38.0 × 37.0 mm with rectangular fins. The height, length and thickness of a fin was 5.0, 24.0 and 1.0 mm, respectively. The width of fluid channels between the fins was 1.0 mm. The heat sink consisted of a heating and cooling section, and a cover. Two types of heat sinks were used in this study. The two heat sinks were different only in the cover, and the machined depth of the cover was 5.0 and 8.0 mm, respectively. Electric heating from 100 to 300 W was supplied by cartridge heaters and it was equivalent to the heat flux from 71.12 to 213.4 kW/m2 based on the cross section area of the cooled surface. The saturation temperatures of the FC-72 were from 59.8 °C to 71.5 °C during the experiment and the mass fluxes were from 24.2 to 230.0 kg/m2s. The trend of heat transfer and pressure drop variation with the change of vapor quality was similar to that of flow boiling in tubes such as the increase of heat transfer and pressure drop with the increase of vapor quality before dryout. Similar heat transfer coefficients and pressure drop values were measured under the same mass flow conditions for both types of heat sinks. In this study, the cooling performance with liquid water was also measured at the same heat sinks. The comparison of experimental data presented that the cooling capacity with FC-72 flow boiling was up to 330 % higher than that with liquid water. However, the FC-72 pressure drop was also significantly higher than water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. U.S. Department of Defense, Reliability prediction of electronic equipment, MILHDBK-2178B, NTIS, Springfield, VA, USA (1974).

    Google Scholar 

  2. M. Pedram and S. Nazarian, Thermal modeling, analysis, and management in VLSI circuits: Principles and methods, Proc IEEE, 94 (2006) 1487–518.

    Google Scholar 

  3. International Electronics Manufacturing Initiative (iNEMI), Electronics manufacturing initiative technology roadmap, Herndon, VA, USA (2004).

  4. S. M. S. Murshed and C. A. N. de Castro, A critical review of traditional and emerging techniques and fluids for electronics cooling, Renewable and Sustainable Energy Reviews, 78 (2017) 821–833.

    Article  Google Scholar 

  5. W. A. Scott, Cooling of electronic equipment, John Wiley and Sons, New York, USA (1974).

    Google Scholar 

  6. Y. F. Maydanik, S. V. Vershinin, M. A. Korukov and J. M. Ochterbeck, Miniature loop heat pipes-a promising means for electronics cooling, IEEE Trans Compon. Packag. Technol., 28 (2) (2005) 290–296.

    Article  Google Scholar 

  7. Y. Wei and Y. K. Joshi, Stacked microchannel heat sinks for liquid cooling of microelectronic components, J. Electron. Packag., 126 (2004) 60–66.

    Article  Google Scholar 

  8. A. A. Khan and K.-Y. Kim, Evaluation of various channel shapes of a microchannel heat sink, Int. J. Air-Cond. Refrig., 24 (3) (2016) 1650018.

    Article  Google Scholar 

  9. J. H. Yun and J. H. Jeong, A review of prediction methods for two-phase pressure loss in mini/micro-channels, Int. J. Air-Cond. Refrig., 24 (1) (2016) 1630002.

    Article  Google Scholar 

  10. S. V. Garimella, V. Singhal and D. Liu, On-chip thermal management with microchannel heat sinks and integrated micropumps, Proc IEEE, 94 (8) (2006) 1534–1548.

    Article  Google Scholar 

  11. P.-Q. Vu, K.-I. Choi, J.-T. Oh and H. Cho, An experimental investigation of condensation heat transfer coefficients and pressure drops of refrigerants inside multiport mini-channel tubes, Int. J. Air-Cond. Refrig., 25 (2) (2017) 1750013.

    Article  Google Scholar 

  12. M. C. Riofrio, N. Caney and J.-A. Gruss, State of the art of efficient pumped two-phase flow cooling technologies, Applied Thermal Eng., 104 (2016) 333–343.

    Article  Google Scholar 

  13. M. Jaworski, Thermal performance of heat spreader for electronics cooling with incorporated phase change material, Applied Thermal Eng., 35 (2012) 212–219.

    Article  Google Scholar 

  14. M. Imran and H. Khan, Conventional refrigeration systems using phase change material: A review, Int. J. Air-Cond. Refrig., 24 (3) (2016) 1630007.

    Article  Google Scholar 

  15. M. Maaspuro, Piezoelectric oscillating cantilever fan for thermal management of electronics and LEDs -A review, Microelectronics Reliability, 63 (2016) 342–353.

    Article  Google Scholar 

  16. O. Ghaffari, S. A. Solovitz, M. Ikhlaq and M. Arik, An investigation into flow and heat transfer of an ultrasonic micro-blower device for electronics cooling applications, Applied Thermal Eng., 106 (2016) 881–889.

    Article  Google Scholar 

  17. A. Martinez, D. Astrain and P. Aranguren, Thermoelectric self-cooling for power electronics: Increasing the cooling power, Energy, 112 (2016) 1–7.

    Article  Google Scholar 

  18. N. Lamaison, C. L. Ong, J. B. Marcinichen and J. R. Thome, Two-phase mini-thermosyphon electronics cooling: Dynamic modeling, experimental validation and application to 2U servers, Applied Thermal Eng., 110 (2017) 481–494.

    Google Scholar 

  19. Z.-W. Li, L.-C. Lv and J. Li, Combination of heat storage and thermal spreading for high power portable electronics cooling, Int. J. Heat Mass Trans., 98 (2016) 550–557.

    Article  Google Scholar 

  20. X. Sun, L. Zhang and S. Liao, Performance of a thermoelectric cooling system integrated with a gravity-assisted heat pipe for cooling electronics, Applied Thermal Eng., 116 (2017) 433–444.

    Article  Google Scholar 

  21. S. A. Jajja, W. Ali, H. M. Ali and A. M. Ali, Water cooled minichannel heat sinks for microprocessor cooling: Effect of fin spacing, Applied Thermal Eng., 64 (2014) 76–82.

    Article  Google Scholar 

  22. F. Brighenti, N. Kamaruzaman and J. J. Brandner, Investigation of self-similar heat sinks for liquid cooled electronics, Applied Thermal Eng., 59 (2013) 725–732.

    Article  Google Scholar 

  23. H. C. Hahm and C. Y. Park, Experimental study on the performance of an electric component liquid cooling system with variation of the waterblock internal shape, Korean J. Air-Cond. and Refrig. Eng., 25 (6) (2013) 331–337.

    Google Scholar 

  24. M.-J. Choi, O.-K. Kwon and J.-H. Yun, Flow distribution and heat transfer characteristics of the micro channel waterblock with different shape of inlet, Korean J. Air-Cond. and Refrig. Eng., 21 (2009) 386–393.

    Google Scholar 

  25. O.-K. Kwon, M.-J. Choi, D.-A. Cha and J.-H. Yun, A study on thermal performance of micro channel waterblock for computer cooling, Trans. of the Korean Society of Mechanical Engineers of KSME B, 32 (2008) 776–783.

    Article  Google Scholar 

  26. A. A. Y. Al-Waaly, M. C. Paul and P. Dobson, Liquid cooling of non-uniform heat flux of a chip circuit by subchannels, Applied Thermal Eng., 115 (2017) 558–574.

    Article  Google Scholar 

  27. D. Yang, Y. Wang, G. Ding, Z. Jin, J. Zhao and G. Wang, Numerical and experimental analysis of cooling performance of single-phase array microchannel heat sinks with different pin-fin configurations, Applied Thermal Eng., 112 (2017) 1547–1556.

    Article  Google Scholar 

  28. B. S. Tilley, On microchannel shapes in liquid-cooled electronics applications, Int. J. Heat. Mass Trans., 62 (2013) 163–173.

    Article  Google Scholar 

  29. V. Silvério, S. Cardoso, J. Gaspar, P. P. Freitas and A. L. N. Moreira, Design, fabrication and test of an integrated multimicrochannel heatsink for electronics cooling, Sensors and Actuators A, 235 (2015) 14–27.

    Article  Google Scholar 

  30. C. S. Sharma, M. K. Tiwari, S. Zimmermann, T. Brunschwiler, G. Schlottig, B. Michel and D. Poulikakos, Energy efficient hotspot-targeted embedded liquid cooling of electronics, Applied Energy, 138 (2015) 414–422.

    Article  Google Scholar 

  31. B. P. Whelan, R. Kempers and A. J. Robinson, A liquidbased system for CPU cooling implementing a jet array impingement waterblock and a tube array remote heat exchanger, Applied Thermal Eng., 39 (2012) 86–94.

    Article  Google Scholar 

  32. J. S. Bintoro, A. Akbarzadeh and M. Mochizuki, A closedloop electronics cooling by implementing single phase impinging jet and mini channels heat exchanger, Applied Thermal Eng., 25 (2005) 2740–2753.

    Article  Google Scholar 

  33. N. A. Roberts and D. G. Walker, Convective performance of nanofluids in commercial electronics cooling systems, Applied Thermal Eng., 30 (2010) 2499–2504.

    Article  Google Scholar 

  34. A. G. A. Nnanna, Application of refrigeration system in electronics cooling, Applied Thermal Eng., 26 (2006) 18–27.

    Article  Google Scholar 

  35. J. Catano, T. Zhang, J. T. Wen, M. K. Jensen and Y. Peles, Vapor compression refrigeration cycle for electronics cooling - Part I: Dynamic modeling and experimental validation, Int. J. Heat Mass Trans., 66 (2013) 911–921.

    Article  Google Scholar 

  36. Z. Wu and R. Du, Design and experimental study of a miniature vapor compression refrigeration system for electronics cooling, Applied Thermal Eng., 31 (2011) 385–390.

    Article  Google Scholar 

  37. B. Ramakrishnan, S. Bhavnani, J. Gess, R. W. Knight, D. Harris and R. W. Johnson, Effect of system and operational parameters on the performance of an immersion-cooled multichip module for high performance computing, 30th Annual Semiconductor Thermal Measurement and Management Symposium (SEMI-THERM) (2014) 24–28.

    Google Scholar 

  38. J. Gess, S. Bhavnani, B. Ramakrishnan, R. W. Johnson, D. Harris, R. W. Knight, M. Hamilton and C. Ellis, Impact of surface enhancements upon boiling heat transfer in a liquid immersion cooled high performance small form factor server model, IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm) (2014) 435–443.

    Chapter  Google Scholar 

  39. M. S. El-Genk, Immersion cooling nucleate boiling of high power computer chips, Energy Convers. Manage., 53 (2012) 205–218.

    Article  Google Scholar 

  40. M. S. El-Genk and J. L. Parker, Nucleate boiling of FC-72 and HFE-7100 on porous graphite at different orientations and liquid subcooling, Energy Convers. Manage., 49 (2008) 733–750.

    Article  Google Scholar 

  41. A. F. Ali and M. S. El-Genk, Effect of inclination on saturation boiling of PF-5060 dielectric liquid on 80-and 137-lm thick copper micro-porous surfaces, Int. J. Therm. Sci., 53 (2012) 42–48.

    Article  Google Scholar 

  42. M. Arik, A. Bar-Cohen and S. M. You, Enhancement of pool boiling critical heat flux in dielectric liquids by microporous coatings, Int. J. Heat Mass Transfer, 50 (2007) 997–1009.

    Article  Google Scholar 

  43. W. Wu, H. Bostanci, L. C. Chow, Y. Hong, M. Su and J. P. Kizito, Nucleate boiling heat transfer enhancement for water and FC-72 on titanium oxide and silicon oxide surfaces, Int. J. Heat Mass Transfer, 53 (2010) 1773–1777.

    Article  Google Scholar 

  44. M. Misale, G. Guglielmini and A. Priarone, Nucleate boiling and critical heat flux of HFE-7100 in horizontal narrow spaces, Exp. Therm. Fluid Sci., 35 (2011) 772–779.

    Article  Google Scholar 

  45. M. Misale, G. Guglielmini and A. Priarone, HFE-7100 pool boiling heat transfer and critical heat flux in inclined narrow spaces, Int. J. Refrig., 32 (2009) 235–245.

    Article  Google Scholar 

  46. H. Honda, H. Takamastu and J. J. Wei, Enhanced boiling of FC-72 on silicon chips with micro-pin-fins and submicronscale roughness, J. Heat Transfer, 124 (2002) 383.

    Article  Google Scholar 

  47. L.-H. Chien and C.-Y. Chang, An experimental study of two-phase multiple jet cooling on finned surfaces using a dielectric fluid, Appl. Therm. Eng., 31 (2011) 1983–1993.

    Article  Google Scholar 

  48. C. H. Shin, K. M. Kim, S. H. Lim and H. H. Cho, Influences of nozzle-plate spacing on boiling heat transfer of confined planar dielectric liquid impinging jet, Int. J. Heat Mass Transfer, 52 (2009) 5293–5301.

    Article  Google Scholar 

  49. M. J. Rau and S. V. Garimella, Local two-phase heat transfer from arrays of confined and submerged impinging jets, Int. J. Heat Mass Transfer, 67 (2013) 487–498.

    Article  Google Scholar 

  50. S. R. Mahmoudi, K. Adamiak and G. S. P. Castle, Twophase cooling characteristics of a saturated free falling circular jet of HFE7100 on a heated disk: Effect of jet length, Int. J. Heat Mass Transfer, 55 (2012) 6181–6190.

    Article  Google Scholar 

  51. R. Cardenas and V. Narayanan, Heat transfer characteristics of submerged jet impingement boiling of saturated FC-72, Int. J. Heat Mass Transfer, 55 (2012) 4217–4231.

    Article  Google Scholar 

  52. E. A. Browne, G. J. Michna, M. K. Jensen and Y. Peles, Microjet array single-phase and flow boiling heat transfer with R134a, Int. J. Heat Mass Transfer, 53 (2010) 5027–5034.

    Article  Google Scholar 

  53. W. Wu, L. C. Chow, C. M. Wang, M. Su and J. P. Kizito, Jet impingement heat transfer using a Field’s alloy nanoparticle-HFE7100 slurry, Int. J. Heat Mass Transfer, 68 (2014) 357–365.

    Article  Google Scholar 

  54. S. Ndao, Y. Peles and M. K. Jensen, Experimental investigation of flow boiling heat transfer of jet impingement on smooth and micro structured surfaces, Int. J. Heat Mass Transfer, 55 (2012) 5093–5101.

    Article  Google Scholar 

  55. D. Guo, J. J. Wei and Y. H. Zhang, Enhanced flow boiling heat transfer with jet impingement on micro-pin-finned surfaces, Appl. Therm. Eng., 31 (2011) 2042–2051.

    Article  MathSciNet  Google Scholar 

  56. S. N. Joshi and E. M. Dede, Effect of sub-cooling on performance of a multi-jet two phase cooler with multi-scale porous surfaces, Int. J. Therm. Sci., 87 (2015) 110–120.

    Article  Google Scholar 

  57. M. K. Sung and I. Mudawar, Effects of jet pattern on twophase performance of hybrid micro-channel/micro-circularjet-impingement thermal management scheme, Int. J. Heat Mass Transfer, 52 (2009) 3364–3372.

    Article  Google Scholar 

  58. C. Y. Park, Y. Jang, B. Kim and Y. Kim, Flow boiling heat transfer coefficients and pressure drop of FC-72 in microchannels, Int. J. Multiphase Flow, 39 (2012) 45–54.

    Article  Google Scholar 

  59. B.-R. Fu, C.-Y. Lee and C. Pan, The effect of aspect ratio on flow boiling heat transfer of HFE-7100 in a microchannel heat sink, Int. J. Heat Mass Transfer, 58 (2013) 53–61.

    Article  Google Scholar 

  60. C.-C. Wang, W.-J. Chang, C.-H. Dai, Y.-T. Lin and K.-S. Yang, Effect of inclination on the convective boiling performance in microchannel heat sink using HFE-7100, Exp. Thermal Fluid Sci. (2012) 143–148.

    Google Scholar 

  61. L.-C. Hsu, S.-W. Cion, K.-W. Lin and C.-C. Wang, An experimental study of inclination on the boiling heat transfer characteristics in a micro-channel heat sink using HFE-7100, Int. Communications Heat Mass Transfer, 62 (2015) 13–17.

    Article  Google Scholar 

  62. L. Saraceno, G. P. Celata, M. Furrer, A. Mariani and G. Zummo, Flow boiling heat transfer of refrigerant FC-72 in microchannels, Int. J. Thermal Sci., 53 (2012) 35–41.

    Article  Google Scholar 

  63. L. Gugliermetti, G. Caruso, L. Saraceno, G. Zummo and G. P. Celata, Saturated flow boiling of FC-72 in 1 mm diameter tube, Int. Communications Heat Mass Transfer, 75 (2016) 115–123.

    Article  Google Scholar 

  64. X. Hu, G. Lin, Y. Cai and D. Wen, Experimental study of flow boiling of FC-72 in parallel minichannels under subatmospheric pressure, App. Thermal Eng., 31 (2011) 3839–3853.

    Article  Google Scholar 

  65. F. Yang, W. Li, X. Dai and C. Li, Flow boiling heat transfer of HFE-7000 in nanowire-coated microchannels, App. Thermal Eng., 93 (2016) 260–268.

    Article  Google Scholar 

  66. Y. Sun, L. Zhang, H. Xu and X. Zhong, Flow boiling enhancement of FC-72 from microporous surfaces in minichannels, Exp. Thermal Fluid Sci., 35 (2011) 1418–1426.

    Article  Google Scholar 

  67. E. M. Cardoso, O. Kannengieser, B. Stutz and J. C. Passos, FC72 and FC87 nucleate boiling inside a narrow horizontal space, Exp. Thermal Fluid Sci., 35 (2010) 1038–1045.

    Article  Google Scholar 

  68. S. Basu, B. Werneke, Y. Peles and M. K. Jensen, Transient microscale flow boiling heat transfer characteristics of HFE-7000, Int. J. Heat Mass Transfer, 90 (2015) 396–405.

    Article  Google Scholar 

  69. S. A. Klein, Engineering equation solver, F-chart software, Madison, Wisconsin, USA (2013).

    Google Scholar 

  70. F. P. Incropera, D. P. Dewitt, T. L. Bergman and A. S. Lavine, Principles of heat and mass transfer, Seventh Edition, John Wiley and Sons, Hoboken, NJ, USA (2013).

    Google Scholar 

  71. R. J. Moffat, Describing the uncertainties in experimental results, Experimental Thermal Fluid Sci., 1 (1) (1988) 3–17.

    Article  Google Scholar 

  72. J. Lee and I. Mudawar, Two-phase flow in high-heat-flux micro-channel heat sink for refrigeration cooling applications: Part II-heat transfer characteristics, Int. J. Heat Mass Trans., 48 (2005) 941–955.

    Article  Google Scholar 

  73. S. S. Bertsch, E. A. Groll and S. V. Garimella, A composite heat transfer correlation for saturated flow boiling in small channels, Int. J. Heat Mass Trans., 52 (2009) 2110–2118.

    Article  Google Scholar 

  74. M. Hamdar, A. Zoughaib and D. Clodic, Flow boiling heat transfer and pressure drop of pure HFG-152a in a horizontal mini-channel, Int. J. Refrig., 33 (2010) 566–577.

    Article  Google Scholar 

  75. K. S. Kaew-On and S. Wongwises, Flow boiling heat transfer of R134a in the multiport minichannel heat exchangers, Exp. Therm. Fluid Sci., 35 (2011) 364–374.

    Article  Google Scholar 

  76. P. A. Kew and K. Cornwell, Correlations for the prediction of boiling heat transfer in small-diameter channels, Appl. Therm. Eng., 17 (1997) 705–715.

    Article  Google Scholar 

  77. W. Li and Z. Wu, A general correlation for evaporative heat transfer in micro/mini-channels, Int. J. Heat Mass Trans., 53 (2010) 1778–1787.

    Article  Google Scholar 

  78. S. Saitoh, H. Daiguji and E. Hihara, Correlation for boiling heat transfer of R-134a in horizontal tubes including effect of tube diameter, Int. J. Heat Mass Trans., 50 (2007) 5215–5225.

    Article  MATH  Google Scholar 

  79. L. Sun and K. Mishima, An evaluation of prediction methods for saturated flow boiling heat transfer in mini-channels, Int. J. Heat Mass Trans., 52 (2009) 5323–5329.

    Article  MATH  Google Scholar 

  80. G. R. Warrier, V. K. Dhir and L. A. Momoda, Heat transfer and pressure drop in narrow rectangular channels, Exp. Therm. Fluid Sci., 26 (2002) 53–64.

    Article  Google Scholar 

  81. K. E. Gungor and R. H. S. Winterton, Simplified general correlation for saturated flow boiling and comparison with data, Chem. Eng. Res. Dev., 65 (1987) 148–156.

    Google Scholar 

  82. Z. Liu and R. H. S. Winterton, A general correlation for saturated and subcooled flow boiling in tubes and annuli, Int. J. Heat Mass Trans., 34 (11) (1991) 2759–2766.

    Article  Google Scholar 

  83. M. M. Shah, A new correlation for heat transfer during boiling flow through pipes, ASHREA Trans., 82 (2) (1976) 66–86.

    Google Scholar 

  84. T. N. Tran, M. W. Wambsganss and D. M. France, Small circular-and rectangular channel boiling with two refrigerants, Int. J. Multiphase Flow, 22 (1996) 485–498.

    Article  MATH  Google Scholar 

  85. J. P. Wattelet, J. C. Chato, B. R. Christoffersen, J. A. Gaibel, M. Ponchner, P. J. Kenney, R. L. Shimon, T. C. Villaneuva, N. L. Rhines, K. A. Sweeney, D. G. Allen and T. T. Hershberger, Heat transfer floe regimes of refrigerants in a horizontal-tube evaporator, ACRC TR-55, University of Illinois at Urbana-Champaign, Urbana, IL, USA (1994).

    Google Scholar 

  86. C. Y. Park, Review: General issues and correlations for predicting flow boiling heat transfer coefficients in microscale channels, Int. J. Air-Cond. Refrig., 23 (4) (2015) 1530003.

    Article  Google Scholar 

  87. L. Friedel, Improved friction pressure correlations for horizontal and vertical two-phase pipe flow, The European Two-Phase Flow Group Meeting, Ispra, Italy, Paper E2 (1979).

    Google Scholar 

  88. H. Müller-Steinhagen and K. Heck, Simple friction pressure drop correlation for twophase flow in pipes, Chem. Eng. Process, 20 (1986) 297–308.

    Article  Google Scholar 

  89. J. Lee and I. Mudawar, Two-phase flow in high-heat-flux micro-channel heat sink for refrigeration cooling applications: Part I-pressure drop characteristics, Int. J. Heat Mass Trans., 48 (2005) 928–940.

    Article  Google Scholar 

  90. Y.-Y. Yan and T.-F. Lin, Condensation heat transfer and pressure drop of refrigerant R-134a in a small pipe, Int. J. Heat Mass Trans., 42 (1999) 697–708.

    Article  Google Scholar 

  91. M. Zhang and R. L. Webb, Correlations of two-phase friction for refrigerants in small diameter tubes, Exp. Thermal Fluid Sci., 25 (2001) 131–139.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang Yong Park.

Additional information

Recommended by Associate Editor Ji Hwan Jeong

Chang Yong Park is an Associate Professor at the Department of Mechanical System Design Engineering, Seoul National University of Science and Technology. He received his B.S. and M.S. degrees from the Department of Mechanical Engineering at Korea University in 1998 and 2000, respectively. Prof. Park received his Ph.D. degree from the Department of Mechanical Science and Engineering at the University of Illinois at Urbana-Champaign in 2006. His research interests are phase change phenomena, microscale heat transfer, heat exchangers, energy systems and HVAC&R systems.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, CH., Lee, MJ. & Park, C.Y. An experimental study on the heat transfer and pressure drop characteristics of electronics cooling heat sinks with FC-72 flow boiling. J Mech Sci Technol 32, 1449–1462 (2018). https://doi.org/10.1007/s12206-018-0249-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12206-018-0249-y

Keywords

Navigation