Skip to main content
Log in

Electrical Detection of Magnetic Skyrmions

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

Magnetic skyrmions are vortex-like spin textures that possess small size, nontrivial topology and high mobility which make them great promise as data carriers for high-density, high-velocity, and low-energy-consumption memory devices. In order to achieve this purpose, it is necessary to transfer the magnetic signal of a single skyrmion into an electrical signal. Here, we give an overview of recent progress in the active research field. Skyrmion and the corresponding memory device are firstly introduced, which is followed by the experimental achievements to electrical detection of magnetic skyrmion in both bulk and nanostructured materials. Finally, we discussed the electrical signal of other localized magnetic structures, which remains unexplored.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. T.H.R. Skyrme, A unified model of K-and π-mesons. Proc. Royal Soc. Lond. A.: Math Phys Sci. 252(1269), 236 (1959)

    ADS  MATH  Google Scholar 

  2. T.H.R. Skyrme, A unified field theory of mesons and baryons. Nuclear Phys. 31, 556–569 (1962)

    ADS  MathSciNet  Google Scholar 

  3. A.N. Bogdanov, D. Yablonskii, Thermodynamically stable “vortices” in magnetically ordered crystals. The mixed state of magnets. Zh. Eksp. Teor. Fiz. 95(1), 178 (1989)

    Google Scholar 

  4. U.K. Rossler, A.N. Bogdanov, C. Pfleiderer, Spontaneous skyrmion ground states in magnetic metals. Nature 442(7104), 797–801 (2006)

    ADS  Google Scholar 

  5. S. Mühlbauer et al., Skyrmion lattice in a chiral magnet. Science 323(5916), 915–919 (2009)

    ADS  Google Scholar 

  6. K. Shibata et al., Towards control of the size and helicity of skyrmions in helimagnetic alloys by spin-orbit coupling. Nat Nano 8(10), 723–728 (2013)

    Google Scholar 

  7. N. Nagaosa, Y. Tokura, Topological properties and dynamics of magnetic skyrmions. Nat Nano 8(12), 899–911 (2013)

    Google Scholar 

  8. F. Jonietz et al., Spin transfer torques in MnSi at ultralow current densities. Science 330(6011), 1648–1651 (2010)

    ADS  Google Scholar 

  9. S. Seki et al., Observation of skyrmions in a multiferroic material. Science 336(6078), 198–201 (2012)

    ADS  Google Scholar 

  10. K. Shibata et al., Large anisotropic deformation of skyrmions in strained crystal. Nat Nano 10(7), 589–592 (2015)

    Google Scholar 

  11. L. Kong, J. Zang, Dynamics of an insulating skyrmion under a temperature gradient. Phys. Rev. Lett. 111(6), 067203 (2013)

    ADS  Google Scholar 

  12. A. Fert, V. Cros, J. Sampaio, Skyrmions on the track. Nat. Nanotechnol. 8(3), 152–156 (2013)

    ADS  Google Scholar 

  13. J. Iwasaki, M. Mochizuki, N. Nagaosa, Current-induced skyrmion dynamics in constricted geometries. Nat. Nanotechnol. 8(10), 742–747 (2013)

    ADS  Google Scholar 

  14. J. Sampaio et al., Nucleation, stability and current-induced motion of isolated magnetic skyrmions in nanostructures. Nat. Nanotechnol. 8(11), 839–844 (2013)

    ADS  Google Scholar 

  15. U.K. Rößler, A.A. Leonov, A.N. Bogdanov, Chiral skyrmionic matter in non-centrosymmetric magnets. J. Phys: Conf. Ser. 303, 012105 (2011)

    Google Scholar 

  16. A. Fert, N. Reyren, V. Cros, Magnetic skyrmions: advances in physics and potential applications. Nat. Rev. Mater. 2(7), 17031 (2017)

    ADS  Google Scholar 

  17. S. Woo et al., Observation of room-temperature magnetic skyrmions and their current-driven dynamics in ultrathin metallic ferromagnets. Nat. Mater. 15(5), 501–506 (2016)

    ADS  MathSciNet  Google Scholar 

  18. W. Jiang et al., Blowing magnetic skyrmion bubbles. Science 349(6245), 283–286 (2015)

    ADS  Google Scholar 

  19. G. Yu et al., Room-temperature creation and spin-orbit torque manipulation of skyrmions in thin films with engineered asymmetry. Nano Lett. 16(3), 1981–1988 (2016)

    ADS  Google Scholar 

  20. T. Okubo, S. Chung, H. Kawamura, Multiple-q states and the skyrmion lattice of the triangular-lattice Heisenberg antiferromagnet under magnetic fields. Phys. Rev. Lett. 108(1), 017206 (2012)

    ADS  Google Scholar 

  21. X. Yu et al., Magnetic stripes and skyrmions with helicity reversals. Proc. Natl. Acad. Sci. 109(23), 8856–8860 (2012)

    ADS  Google Scholar 

  22. S. Heinze et al., Spontaneous atomic-scale magnetic skyrmion lattice in two dimensions. Nat. Phys. 7(9), 713–718 (2011)

    Google Scholar 

  23. F. Rybakov, A. Borisov, A. Bogdanov, Three-dimensional skyrmion states in thin films of cubic helimagnets. Phys. Rev. B 87(9), 094424 (2013)

    ADS  Google Scholar 

  24. H. Du et al., Interaction of individual skyrmions in a nanostructured cubic chiral magnet. Phys. Rev. Lett. 120(19), 197203 (2018)

    ADS  Google Scholar 

  25. X.Z. Yu et al., Real-space observation of a two-dimensional skyrmion crystal. Nature 465(7300), 901–904 (2010)

    ADS  Google Scholar 

  26. Y. Tokunaga et al., A new class of chiral materials hosting magnetic skyrmions beyond room temperature. Nat Commun 6, 7638 (2015)

    ADS  Google Scholar 

  27. X.Z. Yu et al., Near room-temperature formation of a skyrmion crystal in thin-films of the helimagnet FeGe. Nat. Mater. 10(2), 106–109 (2011)

    ADS  Google Scholar 

  28. X. Zhao et al., Direct imaging of magnetic field-driven transitions of skyrmion cluster states in FeGe nanodisks. Proc. Natl. Acad. Sci. 113(18), 4918 (2016)

    ADS  Google Scholar 

  29. W. Li et al., Emergence of skyrmions from rich parent phases in the molybdenum nitrides. Phys. Rev. B 93(6), 060409 (2016)

    ADS  Google Scholar 

  30. W. Wei et al., Rh2Mo3N: noncentrosymmetrics-wave superconductor. Phys. Rev. B 94(10), 104503 (2016)

    ADS  Google Scholar 

  31. A. Soumyanarayanan et al., Tunable room-temperature magnetic skyrmions in Ir/Fe/Co/Pt multilayers. Nat. Mater. 16(9), 898–904 (2017)

    ADS  Google Scholar 

  32. M. Hoffmann et al., Antiskyrmions stabilized at interfaces by anisotropic Dzyaloshinskii–Moriya interactions. Nat Commun 8(1), 308 (2017)

    ADS  Google Scholar 

  33. A.K. Nayak et al., Magnetic antiskyrmions above room temperature in tetragonal Heusler materials. Nature 548(7669), 561–566 (2017)

    ADS  Google Scholar 

  34. D. Weller, A. Moser, Thermal effect limits in ultrahigh-density magnetic recording. IEEE Trans. Magn. 35(6), 4423–4439 (1999)

    ADS  Google Scholar 

  35. S.S.P. Parkin, M. Hayashi, L. Thomas, Magnetic domain-wall racetrack memory. Science 320(5873), 190–194 (2008)

    ADS  Google Scholar 

  36. A. Brataas, A.D. Kent, H. Ohno, Current-induced torques in magnetic materials. Nat. Mater. 11, 372 (2012)

    ADS  Google Scholar 

  37. R. Ritz et al., Giant generic topological Hall resistivity of MnSi under pressure. Phys. Rev. B 87(13), 134424 (2013)

    ADS  Google Scholar 

  38. K. Kadowaki, K. Okuda, M. Date, Magnetization and magnetoresistance of MnSi. J. Phys. Soc. Jpn. 51(8), 2433–2438 (1982)

    ADS  Google Scholar 

  39. B.J. Chapman et al., Large enhancement of emergent magnetic fields in MnSi with impurities and pressure. Phys. Rev. B 88(21), 214406 (2013)

    ADS  Google Scholar 

  40. M.J. Stolt et al., Electrical detection and magnetic imaging of stabilized magnetic skyrmions in Fe1−xCoxGe (x < 0.1) microplates. Adv. Funct. Mater. 29(12), 1805418 (2019)

    Google Scholar 

  41. D. Liang et al., Current-driven dynamics of skyrmions stabilized in MnSi nanowires revealed by topological Hall effect. Nat Commun 6, 8217 (2015)

    ADS  Google Scholar 

  42. N. Nagaosa et al., Anomalous Hall effect. Rev. Mod. Phys. 82(2), 1539–1592 (2010)

    ADS  Google Scholar 

  43. S.D. Yi et al., Skyrmions and anomalous Hall effect in a Dzyaloshinskii–Moriya spiral magnet. Phys. Rev. B 80(5), 054416 (2009)

    ADS  Google Scholar 

  44. C. Franz et al., Real-space and reciprocal-space Berry phases in the Hall effect of Mn(1 − x)Fe(x)Si. Phys. Rev. Lett. 112(18), 186601 (2014)

    ADS  Google Scholar 

  45. Y. Li et al., Robust formation of skyrmions and topological hall effect anomaly in epitaxial thin films of MnSi. Phys. Rev. Lett. 110(11), 117202 (2013)

    ADS  Google Scholar 

  46. T. Yokouchi et al., Stability of two-dimensional skyrmions in thin films of Mn1 − xFexSi investigated by the topological Hall effect. Phys. Rev. B 89(6), 064416 (2014)

    ADS  Google Scholar 

  47. J.C. Gallagher et al., Robust zero-field skyrmion formation in FeGe epitaxial thin films. Phys. Rev. Lett. 118(2), 027201 (2017)

    ADS  Google Scholar 

  48. A. Neubauer, et al., Topological Hall effect in the A phase of MnSi. Phys. Rev. Lett. 102(18), 186602 (2009)

    ADS  Google Scholar 

  49. T. Schulz et al., Emergent electrodynamics of skyrmions in a chiral magnet (supplementary). Nat. Phys. 8(4), 301–304 (2012)

    Google Scholar 

  50. M. Leroux et al., Skyrmion lattice topological hall effect near room temperature. Sci. Rep. 8(1), 15510 (2018)

    ADS  Google Scholar 

  51. N. Kanazawa et al., Large topological Hall effect in a short-period helimagnet MnGe. Phys. Rev. Lett. 106(15), 156603 (2011)

    ADS  Google Scholar 

  52. M. Raju et al., The evolution of skyrmions in Ir/Fe/Co/Pt multilayers and their topological Hall signature. Nat Commun 10(1), 696 (2019)

    ADS  Google Scholar 

  53. W. Jiang et al., Direct observation of the skyrmion Hall effect. Nat. Phys. 13(2), 162–169 (2017)

    Google Scholar 

  54. C. Reichhardt, C.J. Olson Reichhardt, Noise fluctuations and drive dependence of the skyrmion Hall effect in disordered systems. New J. Phys. 18(9), 095005 (2016)

    ADS  Google Scholar 

  55. K. Litzius et al., Skyrmion Hall effect revealed by direct time-resolved X-ray microscopy. Nat. Phys. 13(2), 170–175 (2016)

    Google Scholar 

  56. H. Du et al., Magnetic vortex with skyrmionic core in a thin nanodisk of chiral magnets. EPL (Europhys. Lett.) 101(3), 37001 (2013)

    ADS  Google Scholar 

  57. H. Du et al., Field-driven evolution of chiral spin textures in a thin helimagnet nanodisk. Phys. Rev. B 87(1), 014401 (2013)

    ADS  Google Scholar 

  58. D. Niarchos et al., Target-skyrmions and skyrmion clusters in nanowires of chiral magnets, in EPJ Web of Conferences, vol. 75 (2014), p. 05002

  59. M. Beg et al., Ground state search, hysteretic behaviour, and reversal mechanism of skyrmionic textures in confined helimagnetic nanostructures. Sci. Rep. 5, 17137 (2015)

    ADS  Google Scholar 

  60. J.M. Higgins et al., Signature of helimagnetic ordering in single-crystal MnSi nanowires. Nano Lett. 10(5), 1605–1610 (2010)

    ADS  Google Scholar 

  61. H. Du et al., Edge-mediated skyrmion chain and its collective dynamics in a confined geometry. Nat. Commun. 6, 8504 (2015)

    ADS  Google Scholar 

  62. K. Seo et al., Itinerant helimagnetic single-crystalline MnSi nanowires. ACS Nano 4(5), 2569–2576 (2010)

    Google Scholar 

  63. H. Du et al., Highly stable skyrmion state in helimagnetic MnSi nanowires. Nano Lett. 14(4), 2026–2032 (2014)

    ADS  Google Scholar 

  64. H. Du et al., Electrical probing of field-driven cascading quantized transitions of skyrmion cluster states in MnSi nanowires. Nat Commun 6, 7637 (2015)

    ADS  Google Scholar 

  65. N. Kanazawa et al., Discretized topological Hall effect emerging from skyrmions in constricted geometry. Phys. Rev. B 91(4), 041122 (2015)

    ADS  Google Scholar 

  66. K. Hamamoto, M. Ezawa, N. Nagaosa, Purely electrical detection of a skyrmion in constricted geometry. Appl. Phys. Lett. 108(11), 112401 (2016)

    ADS  Google Scholar 

  67. D. Maccariello et al., Electrical detection of single magnetic skyrmions in metallic multilayers at room temperature. Nat. Nanotechnol. 13(3), 233 (2018)

    ADS  Google Scholar 

  68. K. Zeissler et al., Discrete Hall resistivity contribution from Neel skyrmions in multilayer nanodiscs. Nat. Nanotechnol. 13(12), 1161–1166 (2018)

    ADS  Google Scholar 

  69. M.N. Baibich et al., Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices. Phys. Rev. Lett. 61(21), 2472–2475 (1988)

    ADS  Google Scholar 

  70. G. Binasch et al., Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange. Phys. Rev. B 39(7), 4828–4830 (1989)

    ADS  Google Scholar 

  71. A. Kubetzka et al., Impact of the skyrmion spin texture on magnetoresistance. Phys. Rev. B 95(10), 104433 (2017)

    ADS  Google Scholar 

  72. D.M. Crum et al., Perpendicular reading of single confined magnetic skyrmions. Nat. Commun. 6, 8541 (2015)

    ADS  Google Scholar 

  73. P.M. Levy, S. Zhang, Resistivity due to domain wall scattering. Phys. Rev. Lett. 79(25), 5110–5113 (1997)

    ADS  Google Scholar 

  74. K.M. Seemann et al., Disentangling the physical contributions to the electrical resistance in magnetic domain walls: a multiscale study. Phys. Rev. Lett. 108(7), 077201 (2012)

    ADS  Google Scholar 

  75. M. Bode et al., Magnetization-direction-dependent local electronic structure probed by scanning tunneling spectroscopy. Phys. Rev. Lett. 89(23), 237205 (2002)

    ADS  Google Scholar 

  76. C. Gould et al., Tunneling anisotropic magnetoresistance: a spin-valve-like tunnel magnetoresistance using a single magnetic layer. Phys. Rev. Lett. 93(11), 117203 (2004)

    ADS  Google Scholar 

  77. C. Hanneken et al., Electrical detection of magnetic skyrmions by tunnelling non-collinear magnetoresistance. Nat. Nanotechnol. 10(12), 1039–1042 (2015)

    ADS  Google Scholar 

  78. J.F. Schäfer et al., Skyrmion Meets Magnetic Tunnel Junction: An Efficient Way for Electrical Skyrmion Detection investigated by Ab Initio Theory, vol. 1901. arXiv, 2019, p. 10313

  79. K. Hamamoto, N. Nagaosa, Electrical Detection of a Skyrmion in a Magnetic Tunneling Junction (2018). arXiv:1803.04588

  80. F. Zheng et al., Experimental observation of chiral magnetic bobbers in B20-type FeGe. Nat. Nanotechnol. 13(6), 451–455 (2018)

    ADS  Google Scholar 

  81. F.N. Rybakov et al., New type of stable particlelike states in chiral magnets. Phys. Rev. Lett. 115(11), 117201 (2015)

    ADS  Google Scholar 

  82. F.N. Rybakov et al., New spiral state and skyrmion lattice in 3D model of chiral magnets. New J. Phys. 18(4), 045002 (2016)

    ADS  Google Scholar 

  83. X.Z. Yu et al., Transformation between meron and skyrmion topological spin textures in a chiral magnet. Nature 564(7734), 95–98 (2018)

    ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China, Grant No. 2017YFA0303201; the Key Research Program of Frontier Sciences, CAS, Grant No. QYZDB-SSW-SLH009; the Natural Science Foundation of China, Grants Nos. 51622105, 11804343, and 11504351; the President Foundation of Hefei Institutes of Physical Science, CAS, Grant No. YZJJ2018QN15.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin Tang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Tang, J., Wang, W. et al. Electrical Detection of Magnetic Skyrmions. J Low Temp Phys 197, 321–336 (2019). https://doi.org/10.1007/s10909-019-02202-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-019-02202-w

Keywords

Navigation