Skip to main content
Log in

Finite-Size Effects of Surface Tension in Two Segregated BECs Confined by Two Hard Walls

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

The finite-size effects of the surface tension in two segregated Bose–Einstein condensates limited by two hard walls are studied respectively in canonical ensemble and grand canonical ensemble by means of the Gross–Pitaevskii theory in the modified double-parabola approximation. The analytical formulae of surface tensions and their finite-size effects are found together with a new type of long-range forces acting on two walls.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. C.J. Myatt, E.A. Burt, R.W. Ghrist, E.A. Cornell, C.E. Wieman, Phys. Rev. Lett. 78, 586 (1997)

    Article  ADS  Google Scholar 

  2. D.S. Hall, M.R. Matthews, J.R. Ensher, C.E. Wieman, E.A. Cornell, Phys. Rev. Lett. 81, 1539 (1998)

    Article  ADS  Google Scholar 

  3. D.M. Stamper-Kurn, H.-J. Miesner, A.P. Chikkatur, S. Inouye, J. Stenger, W. Ketterle, Phys. Rev. Lett. 83, 661 (1999)

    Article  ADS  Google Scholar 

  4. M.R. Matthews, B.P. Anderson, P.C. Haljan, D.S. Hall, C.E. Wieman, E.A. Cornell, Phys. Rev. Lett. 83, 2498 (1999)

    Article  ADS  Google Scholar 

  5. H.-J. Miesner, D.M. Stamper-Kurn, J. Stenger, S. Inouye, A.P. Chikkatur, W. Ketterle, Phys. Rev. Lett. 82, 2228 (1999)

    Article  ADS  Google Scholar 

  6. D.J. Mc Carron, H.W. Cho, D.L. Jenkin, M.P. Koppinger, S.L. Cornish, Phys. Rev. A 84, 011603 (R) (2011)

    Article  ADS  Google Scholar 

  7. S.B. Papp, J.M. Pino, C.E. Wieman, Phys. Rev. Lett. 101, 040402 (2008)

    Article  ADS  Google Scholar 

  8. D.S. Hall, in Emergent Nonlinear Phenomena in Bose–Einstein condensates, ed. by P.G. Kevrekidis, D.J. Frantzeskakis, R. Carretero-Gonzales (Springer, Berlin, 2008), Chap. 16, p. 307

  9. S. Tojo, Y. Taguchi, Y. Masuyama, T. Hayashi, H. Saito, T. Hirano, Phys. Rev. A 82, 033609 (2010)

    Article  ADS  Google Scholar 

  10. G. Modugno, M. Modugno, F. Riboli, G. Roati, M. Inguscio, Phys. Rev. Lett. 89, 190404 (2002)

    Article  ADS  Google Scholar 

  11. E. Timmermans, Phys. Rev. Lett. 81, 5718 (1998)

    Article  ADS  Google Scholar 

  12. P. Ao, S.T. Chui, Phys. Rev. A 58, 4836 (1998)

    Article  ADS  Google Scholar 

  13. T.-L. Ho, V.B. Shenoy, Phys. Rev. Lett. 77, 3276 (1996)

    Article  ADS  Google Scholar 

  14. A.S. Alexandrov, V.V. Kabanov, J. Phys.: Condens. Matter 14, L327 (2002)

    ADS  Google Scholar 

  15. A.A. Svidzinsky, S.T. Chui, Phys. Rev. A 67, 053608 (2003)

    Article  ADS  Google Scholar 

  16. A.A. Svidzinsky, S.T. Chui, Phys. Rev. A. 68, 013612 (2003)

    Article  ADS  Google Scholar 

  17. R. Navarro, R. Carretero-Gonzalez, P.G. Kevrekidis, Phys. Rev. A 80, 023613 (2009)

    Article  ADS  Google Scholar 

  18. S. Gautam, D. Angom, J. Phys. B 43, 095302 (2010)

    Article  ADS  Google Scholar 

  19. S. Gautam, D. Angom, Phys. Rev. A 81, 053616 (2010)

    Article  ADS  Google Scholar 

  20. Z. Liu, J. Math. Phys. 50, 102104 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  21. G. Thalhammer, G. Barontini, L. De Sarlo, J. Catani, F. Minardi, M. Inguscio, Phys. Rev. Lett. 100, 210402 (2008)

    Article  ADS  Google Scholar 

  22. S. Stellmer, R. Grimm, F. Schreck, Phys. Rev. A 87, 013611 (2013)

    Article  ADS  Google Scholar 

  23. B.M. Malomed, D.S. Hall, in Emergent Nonlinear Phenomena in Bose–Einstein Condensates: Theory and Experiment, ed. by P.G. Kevredikis, D.J. Frantzeskakis, R. Carretero-Golzalez (Springer, Berlin, 2008), Chaps. 15, 16

  24. L. Wen, W.M. Liu, Y. Cai, J.M. Zhang, J. Hu, Phys. Rev. A 85, 043602 (2012)

    Article  ADS  Google Scholar 

  25. R.W. Pattinson, T.P. Billam, S.A. Gardiner, D.J. McCarron, H.W. Cho, S.L. Cornish, N.G. Parker, N.P. Proukakis, Phys. Rev. A 87, 013625 (2013)

    Article  ADS  Google Scholar 

  26. I.E. Mazets, Phys. Rev. A 65, 033618 (2002)

    Article  ADS  Google Scholar 

  27. R.A. Barankov, Phys. Rev. A 66, 013612 (2002)

    Article  ADS  Google Scholar 

  28. K. Sasaki, N. Suzuki, D. Akamatsu, H. Saito, PRA 80, 063611 (2009)

    Article  ADS  Google Scholar 

  29. H. Takeuchi, N. Suzuki, K. Kasamatsu, H. Saito, M. Tsubota, Phys. Rev. B 81, 094517 (2010)

    Article  ADS  Google Scholar 

  30. D. Kobyakov, V. Bychkov, E. Lundh, A. Bezett, V. Akkerman, M. Marklund, Phys. Rev. A 83, 043623 (2011)

    Article  ADS  Google Scholar 

  31. A. Bezett, V. Bychkov, E. Lundh, D. Kobyakov, M. Marklund, Phys. Rev. A 82, 043608 (2010)

    Article  ADS  Google Scholar 

  32. F.V. Pepe, P. Facchi, G. Florio, S. Pascazio, Phys. Rev. A 86, 023629 (2012)

    Article  ADS  Google Scholar 

  33. B. Van Schaeybroeck, Phys. Rev. A 78, 023624 (2008)

    Article  ADS  Google Scholar 

  34. B. Van Schaeybroeck, Phys. Rev. A 80, 06560 (2009). (addendum)

    Google Scholar 

  35. J.O. Indekeu, B. Van Schaeybroeck, Phys. Rev. Lett. 93, 210402 (2004)

    Article  ADS  Google Scholar 

  36. B. Van Schaeybroeck, J.O. Indekeu, Phys. Rev. A 91, 013626 (2015)

    Article  ADS  Google Scholar 

  37. J.O. Indekeu, C.-Y. Lin, N. VanThu, B. Van Schaeybroeck, T.H. Phat, Phys. Rev. A 91, 033615 (2015)

    Article  ADS  Google Scholar 

  38. Nguyen Van Thu, Tran Huu Phat, Pham The Song, Wetting phase transition of two segregated Bose–Einstein condensates restricted by a hard wall. Phys. Lett. A. 380, 1487 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  39. J.G. Brankov, D.M. Danchev, N.S. Tonchev, Theory of Critical Phenomena in Finite-Size Systems: Scaling and Quantum Effects (World Scientific, Singapore, 2000)

    Book  MATH  Google Scholar 

  40. R. Lipowsky, in Random Fluctuations and Pattern Growth, ed. by H. Stanley, N. Ostrowsky, NATO ASI Series E, vol 157 ( Kluwer Akad. Publ., Dordrecht, 1988), pp. 227–245

  41. K. Binder, in Phase Transitions and Critical Phenomena, ed. by C. Domb, J. Lebowitz vol 8 (Academic Press, London, 1983)

  42. F. Igloi, I. Peschel, L. Turban, Adv. Phys. 42, 683 (1993)

    Article  ADS  Google Scholar 

  43. S. Puri, L. Frisch, J. Condens. Matter 9, 2109 (1997)

    Article  ADS  Google Scholar 

  44. H. Furukawa, Physics 204, 237 (1994)

    Google Scholar 

  45. M. Krech, The Casimir Effect in Critical Systems (World Scientific, Singapore, 1994)

    Book  Google Scholar 

  46. K. Binder, J. Non-Equilib. Thermodyn. 23, 1 (1998)

    Article  ADS  Google Scholar 

  47. S. Puri, J. Phys. Condens. Matter 17, R1 (2005)

    Article  Google Scholar 

  48. J.G. Brankov, D.M. Danchev, N.S. Tonchev, Theory of Critical Phenomena in Finite-Sise Systems, Sacling and Quantum Effects (World Scientific, Singapore, 2010)

    Google Scholar 

  49. K. Binder, S. Puri, S.K. Das, J. Horbach, J. Stat. Phys. Condens. 138, 51 (2010)

    Article  ADS  Google Scholar 

  50. D.A. Takahashi, M. Kobayashi, M. Nitta, Phys. Rev. B 91, 184501 (2015)

    Article  ADS  Google Scholar 

  51. T.H. Phat, N. Van Thu, Int. J. Mod. Phys. A 29, 1450078 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  52. A. Onuki, Phase Transition Dynamics (Cambridge University Press, Cambridge, 2004)

    MATH  Google Scholar 

  53. M. Uwaha, J. Low Temp. Phys. 77, 165 (1989)

    Article  ADS  Google Scholar 

  54. U. Mohideen, A. Roy, Phys. Rev. Lett. 81, 4549 (1998)

    Article  ADS  Google Scholar 

  55. D. Iannuzzi, M. Lisanti, F. Capasso, Proc. Natl. Acad. Sci. 101, 4019 (2004)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work is funded by the Ministry of Education and Training of Vietnam under Grant No. B2016-SP2-04. The fruitful discussions with Bert V. Schaeybroeck are acknowledged with thanks.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tran Huu Phat.

Appendices

Appendix 1: The Analytics Expression for \(A_j, B_j \)

The constants in Eqs. (15) and (16) are obtained by substitution of them in Robin boundary conditions and continuity conditions for \(\phi _j\) yielding

$$\begin{aligned}&A_1=\frac{e^{\sqrt{2}z_0}[\sqrt{\eta }-\sqrt{\eta }_- e^{\sqrt{2}h_-}+e^{2\sqrt{\eta }h_+}(\sqrt{\eta }-\sqrt{\eta }_+ e^{\sqrt{2}h_-})]}{X}, \end{aligned}$$
(30)
$$\begin{aligned}&A_2=\frac{\sqrt{2}(e^{\sqrt{2}h}-e^{\sqrt{2}z_0})^2e^{\sqrt{\eta }(2h+z_0)}}{X},\end{aligned}$$
(31)
$$\begin{aligned}&B_1=\frac{\sqrt{2}(e^{\frac{\sqrt{2}h_+}{\xi }}-1)^2e^{\frac{\sqrt{\eta }z_0}{\xi }}}{Y},\end{aligned}$$
(32)
$$\begin{aligned}&B_2=\frac{e^{\frac{\sqrt{2}h}{\xi }}(\sqrt{\eta }_- e^{\frac{2\sqrt{\eta }h}{\xi }}+\sqrt{\eta }_+e^{\frac{2\sqrt{\eta }z_0}{\xi }})}{Y}-\frac{e^{\frac{\sqrt{2}h}{\xi }}\sqrt{\eta }(e^{\frac{2\sqrt{\eta }h+\sqrt{2}h_+}{\xi }}+e^{\frac{\sqrt{2}h_++2\sqrt{\eta }z_0}{\xi }})}{Y}\qquad \quad \end{aligned}$$
(33)

with

$$\begin{aligned}&h_{\pm }=h\pm z_0, \sqrt{\eta }_{\pm }=\sqrt{\eta }\pm \sqrt{2},\\&X=\sqrt{\eta }_- e^{2\sqrt{2}h}-\sqrt{\eta }_+e^{2\sqrt{2}z_0}+2 e^{(2\sqrt{\eta }+\sqrt{2})h_+}(\sqrt{\eta }\text {sinh}[\sqrt{2}h_-]+\sqrt{2}\text {cosh}[\sqrt{2}h_-]),\\&Y=e^{\frac{2\sqrt{\eta }z_0}{\xi }}[\sqrt{\eta }_+ -\sqrt{\eta }_- e^{\frac{2\sqrt{2}h_+}{\xi }}]- e^{\frac{2\sqrt{\eta }h}{\xi }}[-\sqrt{\eta }_-+\sqrt{\eta }_+ e^{\frac{2\sqrt{2}h_+}{\xi }}]. \end{aligned}$$

Appendix 2: The Integrals

Using the wave functions for ground state (15), (16) with the constants in “Appendix 1” we arrive

$$\begin{aligned} I_1= & {} \frac{1}{2}(2A_1^2e^{2\sqrt{2}h}(\sqrt{2}\text {sinh}(2\sqrt{2}h_-)+4h_-)+2\sqrt{2}A_1e^{\sqrt{2}(3h-2z_0)}\nonumber \\&-\,2A_1e^{\sqrt{2}h}(\sqrt{2}-4h_-)+\sqrt{2}(e^{2\sqrt{2}h_-}-1)) \nonumber \\&+\,A_2^2\sqrt{\eta }e^{-2\sqrt{\eta }h}(2\sqrt{\eta }h_++\text {sinh}(2\sqrt{\eta }h_+)), \end{aligned}$$
(34)
$$\begin{aligned} I_2= & {} \frac{B_1^2}{\xi ^2}\sqrt{\eta }e^{\frac{2\sqrt{\eta }h}{\xi }} \Bigg [2\sqrt{\eta }h_--\xi \text {sinh}\frac{-2\sqrt{\eta }h_-}{\xi }\Bigg ] \nonumber \\&+\,\frac{e^{\frac{-2\sqrt{2}(3h+z_0)}{\xi }}}{2\xi ^2}\Bigg [B_2^2\left( -\sqrt{2}\xi e^{\frac{2\sqrt{2}h}{\xi }}+8h_+e^{\frac{2\sqrt{2}(2h+z_0)}{\xi }}+\sqrt{2}\xi e^{\frac{2\sqrt{2}(3h+2z_0)}{\xi }}\right) \nonumber \\&-\,2\sqrt{2}B_2\xi e^{\frac{3\sqrt{2}h}{\xi }}+2B_2e^{\frac{\sqrt{2}(5h+2z_0)}{\xi }}(4h_++\sqrt{2}\xi )-\sqrt{2}\xi \left( e^{\frac{4\sqrt{2}h}{\xi }}-e^{\frac{2\sqrt{2}(3h+z_0)}{\xi }}\right) \Bigg ],\nonumber \\ \end{aligned}$$
(35)

and analytical form of the normalization constants

$$\begin{aligned} \mathcal {N}_1= & {} \frac{1}{4}(2A_1^2e^{2\sqrt{2}h}(\sqrt{2}\text {sinh} (2\sqrt{2}h_-) -4h_-)+ 2A_1(e^{\sqrt{2}h}(3\sqrt{2}-4h_-) \nonumber \\&-\,2\sqrt{2}e^{\sqrt{2}(2h-z_0)}+\sqrt{2}e^{\sqrt{2}(3h-2z_0)}-2\sqrt{2}e^{\sqrt{2}z_0})\nonumber \\&+\,\sqrt{2}e^{\sqrt{2}h_-}(e^{\sqrt{2}h_-}-4)+4h_-+3\sqrt{2})\nonumber \\&+\,\frac{A_2^2e^{-2\sqrt{\eta }h}(\text {sinh}(2\sqrt{\eta }h_+)-2\sqrt{\eta }h_+)}{\sqrt{\eta }},\end{aligned}$$
(36)
$$\begin{aligned} \mathcal {N}_2= & {} \frac{1}{4}e^{-\frac{2\sqrt{2}(3h+z_0)}{\xi }} \left( B_2^2\left( -\left( \sqrt{2}\xi e^{\frac{2\sqrt{2}h}{\xi }} +8h_+e^{\frac{2\sqrt{2}(2h+z_0)}{\xi }} -\sqrt{2}\xi e^{\frac{2\sqrt{2}(3h+2z_0)}{\xi }}\right) \right) \right. \nonumber \\&\left. +\,4\sqrt{2}\xi e^{\frac{\sqrt{2}(5h+z_0)}{\xi }}-2\sqrt{2}B_2\xi \left( e^{\frac{3\sqrt{2}h}{\xi }}-2e^{\frac{3\sqrt{2}(2h+z_0)}{\xi }}-2e^{\frac{\sqrt{2}(4h+z_0)}{\xi }}\right) \right. \nonumber \\&\left. -\,2B_2e^{\frac{\sqrt{2}(5h+z_0)}{\xi }}(4h_+ +3\sqrt{2}\xi )-\sqrt{2}\xi e^{\frac{4\sqrt{2}h}{\xi }}+e^{\frac{2\sqrt{2}(3h+z_0)}{\xi }}(4h_+ -3\sqrt{2}\xi )\right) \nonumber \\&-\,\frac{B_1^2}{\sqrt{\eta }}e^{\frac{2\sqrt{2}h}{\xi }}\xi \text {sinh}\Bigg (\frac{-2\sqrt{\eta }h_-}{\xi }\Bigg )-2h_-. \end{aligned}$$
(37)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Van Thu, N., Phat, T.H. & Song, P.T. Finite-Size Effects of Surface Tension in Two Segregated BECs Confined by Two Hard Walls. J Low Temp Phys 186, 127–147 (2017). https://doi.org/10.1007/s10909-016-1658-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-016-1658-x

Keywords

Navigation