Advertisement

Journal of Low Temperature Physics

, Volume 186, Issue 1–2, pp 127–147 | Cite as

Finite-Size Effects of Surface Tension in Two Segregated BECs Confined by Two Hard Walls

  • Nguyen Van Thu
  • Tran Huu Phat
  • Pham The Song
Article

Abstract

The finite-size effects of the surface tension in two segregated Bose–Einstein condensates limited by two hard walls are studied respectively in canonical ensemble and grand canonical ensemble by means of the Gross–Pitaevskii theory in the modified double-parabola approximation. The analytical formulae of surface tensions and their finite-size effects are found together with a new type of long-range forces acting on two walls.

Keywords

Finite-size effects Segregated Bose–Einstein condensates Surface tension Double-parabola approximation Casimir force 

Notes

Acknowledgments

This work is funded by the Ministry of Education and Training of Vietnam under Grant No. B2016-SP2-04. The fruitful discussions with Bert V. Schaeybroeck are acknowledged with thanks.

References

  1. 1.
    C.J. Myatt, E.A. Burt, R.W. Ghrist, E.A. Cornell, C.E. Wieman, Phys. Rev. Lett. 78, 586 (1997)ADSCrossRefGoogle Scholar
  2. 2.
    D.S. Hall, M.R. Matthews, J.R. Ensher, C.E. Wieman, E.A. Cornell, Phys. Rev. Lett. 81, 1539 (1998)ADSCrossRefGoogle Scholar
  3. 3.
    D.M. Stamper-Kurn, H.-J. Miesner, A.P. Chikkatur, S. Inouye, J. Stenger, W. Ketterle, Phys. Rev. Lett. 83, 661 (1999)ADSCrossRefGoogle Scholar
  4. 4.
    M.R. Matthews, B.P. Anderson, P.C. Haljan, D.S. Hall, C.E. Wieman, E.A. Cornell, Phys. Rev. Lett. 83, 2498 (1999)ADSCrossRefGoogle Scholar
  5. 5.
    H.-J. Miesner, D.M. Stamper-Kurn, J. Stenger, S. Inouye, A.P. Chikkatur, W. Ketterle, Phys. Rev. Lett. 82, 2228 (1999)ADSCrossRefGoogle Scholar
  6. 6.
    D.J. Mc Carron, H.W. Cho, D.L. Jenkin, M.P. Koppinger, S.L. Cornish, Phys. Rev. A 84, 011603 (R) (2011)ADSCrossRefGoogle Scholar
  7. 7.
    S.B. Papp, J.M. Pino, C.E. Wieman, Phys. Rev. Lett. 101, 040402 (2008)ADSCrossRefGoogle Scholar
  8. 8.
    D.S. Hall, in Emergent Nonlinear Phenomena in Bose–Einstein condensates, ed. by P.G. Kevrekidis, D.J. Frantzeskakis, R. Carretero-Gonzales (Springer, Berlin, 2008), Chap. 16, p. 307Google Scholar
  9. 9.
    S. Tojo, Y. Taguchi, Y. Masuyama, T. Hayashi, H. Saito, T. Hirano, Phys. Rev. A 82, 033609 (2010)ADSCrossRefGoogle Scholar
  10. 10.
    G. Modugno, M. Modugno, F. Riboli, G. Roati, M. Inguscio, Phys. Rev. Lett. 89, 190404 (2002)ADSCrossRefGoogle Scholar
  11. 11.
    E. Timmermans, Phys. Rev. Lett. 81, 5718 (1998)ADSCrossRefGoogle Scholar
  12. 12.
    P. Ao, S.T. Chui, Phys. Rev. A 58, 4836 (1998)ADSCrossRefGoogle Scholar
  13. 13.
    T.-L. Ho, V.B. Shenoy, Phys. Rev. Lett. 77, 3276 (1996)ADSCrossRefGoogle Scholar
  14. 14.
    A.S. Alexandrov, V.V. Kabanov, J. Phys.: Condens. Matter 14, L327 (2002)ADSGoogle Scholar
  15. 15.
    A.A. Svidzinsky, S.T. Chui, Phys. Rev. A 67, 053608 (2003)ADSCrossRefGoogle Scholar
  16. 16.
    A.A. Svidzinsky, S.T. Chui, Phys. Rev. A. 68, 013612 (2003)ADSCrossRefGoogle Scholar
  17. 17.
    R. Navarro, R. Carretero-Gonzalez, P.G. Kevrekidis, Phys. Rev. A 80, 023613 (2009)ADSCrossRefGoogle Scholar
  18. 18.
    S. Gautam, D. Angom, J. Phys. B 43, 095302 (2010)ADSCrossRefGoogle Scholar
  19. 19.
    S. Gautam, D. Angom, Phys. Rev. A 81, 053616 (2010)ADSCrossRefGoogle Scholar
  20. 20.
    Z. Liu, J. Math. Phys. 50, 102104 (2009)ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    G. Thalhammer, G. Barontini, L. De Sarlo, J. Catani, F. Minardi, M. Inguscio, Phys. Rev. Lett. 100, 210402 (2008)ADSCrossRefGoogle Scholar
  22. 22.
    S. Stellmer, R. Grimm, F. Schreck, Phys. Rev. A 87, 013611 (2013)ADSCrossRefGoogle Scholar
  23. 23.
    B.M. Malomed, D.S. Hall, in Emergent Nonlinear Phenomena in Bose–Einstein Condensates: Theory and Experiment, ed. by P.G. Kevredikis, D.J. Frantzeskakis, R. Carretero-Golzalez (Springer, Berlin, 2008), Chaps. 15, 16Google Scholar
  24. 24.
    L. Wen, W.M. Liu, Y. Cai, J.M. Zhang, J. Hu, Phys. Rev. A 85, 043602 (2012)ADSCrossRefGoogle Scholar
  25. 25.
    R.W. Pattinson, T.P. Billam, S.A. Gardiner, D.J. McCarron, H.W. Cho, S.L. Cornish, N.G. Parker, N.P. Proukakis, Phys. Rev. A 87, 013625 (2013)ADSCrossRefGoogle Scholar
  26. 26.
    I.E. Mazets, Phys. Rev. A 65, 033618 (2002)ADSCrossRefGoogle Scholar
  27. 27.
    R.A. Barankov, Phys. Rev. A 66, 013612 (2002)ADSCrossRefGoogle Scholar
  28. 28.
    K. Sasaki, N. Suzuki, D. Akamatsu, H. Saito, PRA 80, 063611 (2009)ADSCrossRefGoogle Scholar
  29. 29.
    H. Takeuchi, N. Suzuki, K. Kasamatsu, H. Saito, M. Tsubota, Phys. Rev. B 81, 094517 (2010)ADSCrossRefGoogle Scholar
  30. 30.
    D. Kobyakov, V. Bychkov, E. Lundh, A. Bezett, V. Akkerman, M. Marklund, Phys. Rev. A 83, 043623 (2011)ADSCrossRefGoogle Scholar
  31. 31.
    A. Bezett, V. Bychkov, E. Lundh, D. Kobyakov, M. Marklund, Phys. Rev. A 82, 043608 (2010)ADSCrossRefGoogle Scholar
  32. 32.
    F.V. Pepe, P. Facchi, G. Florio, S. Pascazio, Phys. Rev. A 86, 023629 (2012)ADSCrossRefGoogle Scholar
  33. 33.
    B. Van Schaeybroeck, Phys. Rev. A 78, 023624 (2008)ADSCrossRefGoogle Scholar
  34. 34.
    B. Van Schaeybroeck, Phys. Rev. A 80, 06560 (2009). (addendum)Google Scholar
  35. 35.
    J.O. Indekeu, B. Van Schaeybroeck, Phys. Rev. Lett. 93, 210402 (2004)ADSCrossRefGoogle Scholar
  36. 36.
    B. Van Schaeybroeck, J.O. Indekeu, Phys. Rev. A 91, 013626 (2015)ADSCrossRefGoogle Scholar
  37. 37.
    J.O. Indekeu, C.-Y. Lin, N. VanThu, B. Van Schaeybroeck, T.H. Phat, Phys. Rev. A 91, 033615 (2015)ADSCrossRefGoogle Scholar
  38. 38.
    Nguyen Van Thu, Tran Huu Phat, Pham The Song, Wetting phase transition of two segregated Bose–Einstein condensates restricted by a hard wall. Phys. Lett. A. 380, 1487 (2016)ADSMathSciNetCrossRefGoogle Scholar
  39. 39.
    J.G. Brankov, D.M. Danchev, N.S. Tonchev, Theory of Critical Phenomena in Finite-Size Systems: Scaling and Quantum Effects (World Scientific, Singapore, 2000)CrossRefzbMATHGoogle Scholar
  40. 40.
    R. Lipowsky, in Random Fluctuations and Pattern Growth, ed. by H. Stanley, N. Ostrowsky, NATO ASI Series E, vol 157 ( Kluwer Akad. Publ., Dordrecht, 1988), pp. 227–245Google Scholar
  41. 41.
    K. Binder, in Phase Transitions and Critical Phenomena, ed. by C. Domb, J. Lebowitz vol 8 (Academic Press, London, 1983)Google Scholar
  42. 42.
    F. Igloi, I. Peschel, L. Turban, Adv. Phys. 42, 683 (1993)ADSCrossRefGoogle Scholar
  43. 43.
    S. Puri, L. Frisch, J. Condens. Matter 9, 2109 (1997)ADSCrossRefGoogle Scholar
  44. 44.
    H. Furukawa, Physics 204, 237 (1994)Google Scholar
  45. 45.
    M. Krech, The Casimir Effect in Critical Systems (World Scientific, Singapore, 1994)CrossRefGoogle Scholar
  46. 46.
    K. Binder, J. Non-Equilib. Thermodyn. 23, 1 (1998)ADSCrossRefGoogle Scholar
  47. 47.
    S. Puri, J. Phys. Condens. Matter 17, R1 (2005)CrossRefGoogle Scholar
  48. 48.
    J.G. Brankov, D.M. Danchev, N.S. Tonchev, Theory of Critical Phenomena in Finite-Sise Systems, Sacling and Quantum Effects (World Scientific, Singapore, 2010)Google Scholar
  49. 49.
    K. Binder, S. Puri, S.K. Das, J. Horbach, J. Stat. Phys. Condens. 138, 51 (2010)ADSCrossRefGoogle Scholar
  50. 50.
    D.A. Takahashi, M. Kobayashi, M. Nitta, Phys. Rev. B 91, 184501 (2015)ADSCrossRefGoogle Scholar
  51. 51.
    T.H. Phat, N. Van Thu, Int. J. Mod. Phys. A 29, 1450078 (2014)ADSMathSciNetCrossRefGoogle Scholar
  52. 52.
    A. Onuki, Phase Transition Dynamics (Cambridge University Press, Cambridge, 2004)zbMATHGoogle Scholar
  53. 53.
    M. Uwaha, J. Low Temp. Phys. 77, 165 (1989)ADSCrossRefGoogle Scholar
  54. 54.
    U. Mohideen, A. Roy, Phys. Rev. Lett. 81, 4549 (1998)ADSCrossRefGoogle Scholar
  55. 55.
    D. Iannuzzi, M. Lisanti, F. Capasso, Proc. Natl. Acad. Sci. 101, 4019 (2004)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Nguyen Van Thu
    • 1
    • 2
  • Tran Huu Phat
    • 3
  • Pham The Song
    • 4
  1. 1.Institute for Research and DevelopmentDuy Tan UniversityDa NangVietnam
  2. 2.Department of PhysicsHanoi Pedagogical University 2HanoiVietnam
  3. 3.Vietnam Atomic Energy CommissionHanoiVietnam
  4. 4.Department of Mathematics Physics InformaticsTay Bac UniversitySon LaVietnam

Personalised recommendations