Skip to main content
Log in

Probing Sound Speed of an Optically-Trapped Bose Gas with Periodically Modulated Interactions by Bragg Spectroscopy

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

A Bose–Einstein condensate (BEC) with periodically modulated interactions (PMI) has emerged as a novel kind of periodic superfluid, which has been recently experimentally created using optical Feshbach resonance. In this paper, we are motivated to investigate the superfluidity of a BEC with PMI trapped in an optical lattice (OL). In particular, we explore the effects of PMI on the sound speed and the dynamical structure factor of the model system. Our numerical results, combined with the analytical results in both the weak-potential limit and the tight-binding limit, have shown that the PMI can strongly modify the sound speed of a BEC. Moreover, we have shown that the effects of PMI on the sound speed can be experimentally probed via the dynamic structure factor, where the excitation strength toward the first Bogoliubov band exhibits a marked difference from the non-PMI one. Our predictions of the effects of PMI on the sound speed can be tested using the Bragg spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. C. Chin, R. Grimm, P. Julienne, E. Tiesinga, Rev. Mod. Phys. 82, 1225 (2010)

    Article  ADS  Google Scholar 

  2. M. Theis, G. Thalhammer, K. Winkler, M. Hellwig, G. Ruff, R. Grimm, J.H. Denschlag, Phys. Rev. Lett. 93, 123001 (2004)

    Article  ADS  Google Scholar 

  3. R. Qi, H. Zhai, Phys. Rev. Lett. 106, 163201 (2011)

    Article  ADS  Google Scholar 

  4. R. Yamazaki, S. Taie, S. Sugawa, Y. Takahashi, Phys. Rev. Lett. 105, 050405 (2010)

    Article  ADS  Google Scholar 

  5. I. Bloch, J. Dalibard, W. Zwerger, Rev. Mod. Phys. 80, 885 (2008)

    Article  ADS  Google Scholar 

  6. G. Raithel et al., Phys. Rev. Lett. 78, 630 (1997)

  7. T. Müller-Seydlitz et al., Phys. Rev. Lett. 78, 1038 (1997)

  8. S.E. Hamann et al., Phys. Rev. Lett. 80, 4149 (1998), and references therein

  9. S. Friebel, C. D’Andrea, J. Walz, M. Weitz, T.W. Hänsch, Phys. Rev. A 57, R20 (1998)

    Article  ADS  Google Scholar 

  10. M. Raizen, C. Salomon, Q. Niu, Phys. Today 50, 30 (1997)

    Article  Google Scholar 

  11. L. Guidoni, P. Verkerk, Phys. Rev. A 57, R1501 (1998). and references therein

    Article  ADS  Google Scholar 

  12. L. Guidoni, C. Triché, P. Verkerk, G. Grynberg, Phys. Rev. Lett. 79, 3363 (1997)

    Article  ADS  Google Scholar 

  13. K.I. Petsas, A.B. Coates, G. Grynberg, Phys. Rev. A 50, 5173 (1994)

    Article  ADS  Google Scholar 

  14. I.H. Deutsch, P.S. Jessen, Phys. Rev. A 57, 1972 (1998)

    Article  ADS  Google Scholar 

  15. K. Berg-Sørensen, K. Mølmer, Phys. Rev. A 58, 1480 (1998)

  16. D.I. Choi, Q. Niu, Phys. Rev. Lett. 82, 2022 (1999)

    Article  ADS  Google Scholar 

  17. B. Wu, Q. Niu, Phys. Rev. A 64, 061603(R) (2001)

    Article  ADS  Google Scholar 

  18. E.J. Mueller, Phys. Rev. A 66, 063603 (2002)

  19. A. Polkovnikov, E. Altman, E. Demler, B. Halperin, and M.D. Lukin, Phys. Rev. A. 71, 063613 (2005)

  20. V.I. Yukalov, Laser Phys. 19, 1 (2009)

    Article  ADS  Google Scholar 

  21. O. Morsch, J.H. Müller, M. Cristiani, D. Ciampini, E. Arimondo, Phys. Rev. Lett. 87, 140402 (2001)

    Article  ADS  Google Scholar 

  22. L. Fallani, L.D. Sarlo, J.E. Lye, M. Modugno, R. Saers, C. Fort, M. Inguscio, Phys. Rev. Lett. 93, 140406 (2004)

  23. O. Morsch, M. Oberthaler, Rev. Mod. Phys. 78, 179 (2006)

    Article  ADS  Google Scholar 

  24. S.L. Zhang, Z.W. Zhou, B. Wu, Phys. Rev. A 87, 013633 (2013)

    Article  ADS  Google Scholar 

  25. J. Stenger, S. Inouye, A.P. Chikkatur, D.M. Stamper-Kurn, D.E. Pritchard, W. Ketterle, Phys. Rev. Lett. 82, 4569 (1999)

    Article  ADS  Google Scholar 

  26. D.M. Stamper-Kurn, A.P. Chikkatur, A. Görlitz, S. Inouye, S. Gupta, D.E. Pritchard, W. Ketterle, Phys. Rev. Lett. 83, 2876 (1999)

    Article  ADS  Google Scholar 

  27. J.M. Vogels, K. Xu, C. Raman, J.R. Abo-Shaeer, W. Ketterle, Phys. Rev. Lett. 88, 060402 (2002)

    Article  ADS  Google Scholar 

  28. J. Steinhauer, R. Ozeri, N. Katz, N. Davidson, Phys. Rev. Lett. 88, 120407 (2002)

    Article  ADS  Google Scholar 

  29. R. Ozeri, J. Steinhauer, N. Katz, N. Davidson, Phys. Rev. Lett. 88, 220401 (2002)

    Article  ADS  Google Scholar 

  30. J. Steinhauer, N. Katz, R. Ozeri, N. Davidson, C. Tozzo, F. Dalfovo, Phys. Rev. Lett. 90, 060404 (2003)

    Article  ADS  Google Scholar 

  31. X. Du, S. Wan, E. Yesilada, C. Ryu, D.J. Heinzen, Z. Liang, B. Wu, New. J. Phys. 12, 083025 (2010)

    Article  ADS  Google Scholar 

  32. M. Krämer, C. Menotti, L. Pitaevskii, S. Stringari, Eur. Phys. J. D 27, 247 (2003)

    ADS  Google Scholar 

  33. C. Menotti, M. Krämer, L. Pitaevskii, S. Stringari, Phys. Rev. A 67, 053609 (2003)

    Article  ADS  Google Scholar 

  34. Y. Hu, Z.X. Liang, Phys. Rev. Lett. 107, 110401 (2011)

    Article  ADS  Google Scholar 

  35. Y. Hu, Z.X. Liang, Mod. Phys. Lett. B 27, 1330010 (2013)

    Article  ADS  Google Scholar 

  36. Z.X. Liang, X. Dong, Z.D. Zhang, B. Wu, Phys. Rev. A 78, 023622 (2008)

    Article  ADS  Google Scholar 

  37. D. Pines, P. Noziéres, The Theory of Quantum Liquids, vol. I (Benjamin, New York, 1966)

    Google Scholar 

  38. P. Noziéres, D. Pines, The Theory of Quatum Liquids, vol. II (Addison-Wesley, Reading, 1990)

    Google Scholar 

  39. E. Taylor, E. Zaremba, Phys. Rev. A 68, 053611 (2003)

    Article  ADS  Google Scholar 

  40. D. Boers, C. Weiss, M. Holthaus, Europhys. Lett. 67, 887 (2004)

    Article  ADS  Google Scholar 

  41. R. Ozeri, N. Katz, J. Steinhauer, N. Davidson, Rev. Mod. Phys. 77, 187 (2005)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We thank Ying Hu and Biao Wu for helpful and motivating discussions. This work is supported by the NSF of China (grant nos. 11004200 and 11274315).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaoxin Liang.

Sound Speed of a BEC with PMI in an OL: Perturbation Approach

Sound Speed of a BEC with PMI in an OL: Perturbation Approach

1.1 Weak-Potential Regime

In the weak potential and interaction regime where \(v\thicksim c_{2}\thicksim \lambda \) (\(\lambda \) is a small parameter), both the OL potential (\(v\)) and PMI (\(c_2\)) can be treated as a perturbation to a unperturbed system consisting of a homogeneous qusi-1D BEC. For the considered case in our work where PMI has the same period with OL, we could develop a perturbation theory through the expansion of the condensate wave function \(\psi \left( x\right) \) up to second order of the small parameters, i.e.

$$\begin{aligned} \psi \left( x\right) =\psi ^{\left( 0\right) }\left( x\right) +\lambda \psi ^{\left( 1\right) }\left( x\right) +\lambda ^2\psi ^{\left( 2\right) }\left( x\right) +o(\lambda ^{3}). \end{aligned}$$
(17)

Following the standard procedure [36], we calculate the condensate wave function and the chemical potential order by order, and the results are

$$\begin{aligned} \psi \left( x\right)&= \sqrt{n_{0}}\nonumber \\&-\frac{\sqrt{n_{0}}\left( V+g_{2}n_{0}\right) }{1-4k^{2}+4g_{1}n_{0}}\left( \left( 1-2k\right) e^{ix}+\left( 1+2k\right) e^{-ix}\right) \!,\nonumber \\&+\left( A\frac{2-2k+g_{1}n_{0}}{4-4k^{2}+4g_{1}n_{0}}-B\frac{g_{1}n_{0}}{4-4k^{2}+4g_{1}n_{0}}\right) e^{i2x},\nonumber \\&+\left( -A\frac{g_{1}n_{0}}{4-4k^{2}+4g_{1}n_{0}}+B\frac{2+2k+g_{1}n_{0}}{4-4k^{2}+4g_{1}n_{0}}\right) e^{-i2x}, \end{aligned}$$
(18)

and

$$\begin{aligned} \mu =\frac{1}{2}k^{2}+g_{1}n_{0}-\frac{\left( V+g_{2}n_{0}\right) \left( V+3g_{2}n_{0}\right) }{1-4k^{2}+4g_{1}n_{0}} +2g_{1}n_{0}\frac{\left( 3+4k^{2}\right) \left( V+g_{2}n_{0}\right) ^{2}}{\left( 1-4k^{2}+4g_{1}n_{0}\right) ^{2}}.\nonumber \\ \end{aligned}$$
(19)

with

$$\begin{aligned} A&= \frac{n_{0}^{1/2}V}{2}\frac{\left( 1-2k\right) \left( V+g_{2}n_{0}\right) }{1-4k^{2}+4g_{1}n_{0}} -\frac{n_{0}^{3/2}g_{1}\left( 1-2k\right) \left( 3+2k\right) \left( V+g_{2}n_{0}\right) ^{2}}{\left( 1-4k^{2} +4g_{1}n_{0}\right) ^{2}}\nonumber \\&+\frac{n_{0}^{3/2}g_{2}}{2}\frac{\left( 3-2k\right) \left( V+g_{2}n_{0}\right) }{1-4k^{2}+4g_{1}n_{0}},\end{aligned}$$
(20)
$$\begin{aligned} B&= \frac{n_{0}^{1/2}V}{2}\frac{\left( 1+2k\right) \left( V+g_{2}n_{0}\right) }{1-4k^{2}+4g_{1}n_{0}}-\frac{n_{0}^{3/2}g_{1}\left( 1+2k\right) \left( 3-2k\right) \left( V+g_{2}n_{0}\right) ^{2}}{\left( 1-4k^{2}+4g_{1}n_{0}\right) ^{2}}\nonumber \\&+\frac{n_{0}^{3/2}g_{2}}{2}\frac{\left( 3+2k\right) \left( V+g_{2}n_{0}\right) }{1-4k^{2}+4g_{1}n_{0}}. \end{aligned}$$
(21)

Furthermore, we proceed to derive the energy of the BEC, and then calculate the effective mass \(m^{*}\) and the compressibility \(\kappa \), respectively. The results are as follow,

$$\begin{aligned} \frac{1}{\kappa }=c_{1}-\frac{2c_{2}^{2}}{1+4c_{1}}-\frac{2\left( c_{2}^{2} -v^{2}\right) }{\left( 1+4c_{1}\right) ^{2}}-\frac{2\left( c_{2}+v\right) ^{2}}{\left( 1+4c_{1}\right) ^{3}}+o\left( 3\right) \!, \end{aligned}$$
(22)

and

$$\begin{aligned} \frac{1}{m^{*}}=1-\frac{8\left( c_{2}+v\right) ^{2}}{\left( 1+4c_{1}\right) ^{2}}+o\left( 3\right) \!. \end{aligned}$$
(23)

It thus follows from Eqs. (22) and (23) that the sound speed is derived as

$$\begin{aligned} c_{s}=\sqrt{c_{1}}\left[ 1-\frac{c_{2}^{2}}{c_{1}\left( 1+4c_{1}\right) } -\frac{c_{2}^{2}-v^{2}}{c_{1}\left( 1+4c_{1}\right) ^{2}}-\frac{\left( c_{2}+v\right) ^{2}}{c_{1}\left( 1+4c_{1}\right) ^{3}} -\frac{4\left( c_{2}+v\right) ^{2}}{\left( 1+4c_{1}\right) ^{2}}\right] .\nonumber \\ \end{aligned}$$
(24)

1.2 Tight-Binding Regime

We now turn to the tight-binding regime where \(v\gg c_{2}\) ( while the system is still kept in the superfluid regime). We can write the condensate wave function \(\psi \left( x\right) \) as

$$\begin{aligned} \psi \left( x\right) =e^{ikx}\sum _{L}e^{ikL}f\left( x-L\right) , \end{aligned}$$
(25)

where \(L\) denotes the position of different unit cells and \(f\) denotes the Wannier function. Having in mind that \(f\left( x\right) \) is well localized, we only take into account the overlap between the Wannier functions associated with the nearest-neighbouring sites. By substituting Eq. (25) into Eq. (5), after some straightforward algebra, we arrived at the energy per particle reading

$$\begin{aligned} \varepsilon \left( k\right) =\varepsilon _{0}-\tau \cos \left( kd\right) . \end{aligned}$$
(26)

Here, \(\varepsilon _{0}\) is the on-site energy and \(\tau \) is the tunnelling parameter. More specifically, we have calculated \( \varepsilon _{0}=\frac{1}{2k_{L}}\int f\left( x\right) \left\{ -\frac{1}{2}\frac{\partial ^{2}}{\partial x^{2}}+v\cos \left( x\right) +\frac{1}{2}\left[ c_{1}+c_{2}\cos \left( x\right) \right] df\left( x\right) ^{2}\right\} f\left( x\right) dx\). Note that \(\varepsilon _{0}\) depends on the parameters \(v\), \(c_{1}\) and \(c_{2}\), but not on the wave vector \(k\). The tunnelling parameter \(\tau \) is given by

$$\begin{aligned} \tau =\frac{1}{2k_{L}}\int f\left( x\right) \left\{ -\frac{1}{2}\frac{\partial ^{2}}{\partial x^{2}}+v\cos \left( x\right) +\frac{1}{2}\left[ c_{1}+c_{2}\cos \left( x\right) \right] df\left( x\right) ^{2}\right\} f\left( x-d\right) dx.\nonumber \\ \end{aligned}$$
(27)

We must point out that during the derivation of Eq. (26), the term \(\int f^{2}\left( x\right) f^{2}\left( x\!-\!d\right) dx\) was omitted, which for localized functions, turn out to be much smaller, whereas the term \(\int f^{3}\left( x\right) f\left( x-d\right) dx\) was kept. Deep in the tight-binding regime, the Wannier function \(f\left( x\right) \) can be approximated by a Gaussian form \(f\left( x\right) =\exp \left[ -\left( x+\frac{d}{2}\right) ^{2}/\left( 2\sigma ^{2}\right) \right] /\left( \pi ^{1/4}\sqrt{\sigma }\right) \), where \(\sigma \) is the extension of the Gaussian which can be determined by minimizing the energy of the system. After straightforward calculations, the width \(\sigma \) and the inverse compressibility are derived as

$$\begin{aligned} \sigma&\approx \frac{d}{2\pi V^{\frac{1}{4}}}\left( 1+\frac{1}{16V^{\frac{1}{2}}}\right) ,\end{aligned}$$
(28)
$$\begin{aligned} \frac{1}{\kappa }&\approx \frac{1}{\sqrt{2\pi }}\left( \frac{d}{\sigma }\right) \left( c_{1}-c_{2}e^{-\frac{\pi ^{2}}{2}\left( \frac{\sigma }{d}\right) ^{2}}\right) . \end{aligned}$$
(29)

The effective mass can be obtained from a standard procedure [36], and here we present the final result

$$\begin{aligned} \frac{m}{m^{*}}&= \left[ \frac{1}{4}\left( \frac{d}{\sigma }\right) ^{4} -\frac{1}{2}\left( \frac{d}{\sigma }\right) ^{2}-8\pi ^{2}Ve^{-\pi ^{2}\left( \frac{\sigma }{d}\right) ^{2}} -8\pi \sqrt{2\pi }c_{1}\left( \frac{d}{\sigma }\right) e^{-\frac{1}{8}\left( \frac{d}{\sigma }\right) ^{2}}\right] \nonumber \\&e^{-\frac{1}{4}\left( \frac{d}{\sigma }\right) ^{2}}. \end{aligned}$$
(30)

With both the compressibility \(\kappa \) and the effective mass \(m^*\) being derived, we can readily calculate the sound speed in in the tight-binding regime. Our analytical result is consistent with the numerical calculations (Fig. 2) in corresponding regimes, suggesting that the tight-binding treatment in Eq. (25) is a reliable method.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, L., Li, W., Chen, Z. et al. Probing Sound Speed of an Optically-Trapped Bose Gas with Periodically Modulated Interactions by Bragg Spectroscopy. J Low Temp Phys 177, 291–304 (2014). https://doi.org/10.1007/s10909-014-1210-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-014-1210-9

Keywords

Navigation