Skip to main content
Log in

Unusual behavior of sound velocity of a Bose gas in an optical superlattice at quasi-one-dimension

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

A Bose gas trapped in a one-dimensional optical superlattice has emerged as a novel superfluid characterized by tunable lattice topologies and tailored band structures. In this work, we focus on the propagation of sound in such a novel system and have found new features on sound velocity, which arises from the interplay between the two lattices with different periodicity and is not present in the case of a condensate in a monochromatic optical lattice. Particularly, this is the first time that the sound velocity is found to first increase and then decrease as the superlattice strength increases even at one dimension. Such unusual behavior can be analytically understood in terms of the competition between the decreasing compressibility and the increasing effective mass due to the increasing superlattice strength. This result suggests a new route to engineer the sound velocity by manipulating the superlattice’s parameters. All the calculations based on the mean-field theory are justified by checking the exponent γ of the off-diagonal one-body density matrix that is much smaller than 1. Finally, the conditions for possible experimental realization of our scenario are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Dalfovo, S. Giorgini, L.P. Pitaevskii, S. Stringari, Rev. Mod. Phys. 71, 463 (1999)

    Article  ADS  Google Scholar 

  2. L. Pitaevskii, S. Stringari, Bose-Einstein Condensation (Clarendon Press, Oxford, 2003)

  3. D. Pines, P. Nozières, in The Theory of Quantum Liquids (Benjamin, New York, 1966), Vol. I

  4. D. Pines, P. Nozières, in The Theory of Quantum Liquids (Addison-Wesley, Reading, 1990), Vol. II

  5. I. Bloch, J. Dalibard, W. Zwerger, Rev. Mod. Phys. 80, 885 (2008)

    Article  ADS  Google Scholar 

  6. M. Lewenstein, A. Sanpera, V. Ahufinger, Ultracold Atoms in Optical Lattices: Simulating quantum many-body systems (Oxford University Press, Oxford, 2012)

  7. M.R. Andrews, D.M. Kurn, H.J. Miesner, D.S. Durfee, C.G. Townsend, S. Inouye, W. Ketterle, Phys. Rev. Lett. 79, 553 (1997)

    Article  ADS  Google Scholar 

  8. M.R. Andrews, D.M. Stamper-Kurn, H.J. Miesner, D.S. Durfee, C.G. Townsend, S. Inouye, W. Ketterle, Phys. Rev. Lett. 80, 2967 (1998)

    Article  ADS  Google Scholar 

  9. C. Raman, M. Kohl, R. Onofrio, D.S. Durfee, C.E. Kuklewicz, Z. Hadzibabic, W. Ketterle, Phys. Rev. Lett. 83, 2502 (1999)

    Article  ADS  Google Scholar 

  10. X. Du, S. Wan, E. Yesilada, C. Ryu, D.J. Heinzen, Z. Liang, B. Wu, New. J. Phys. 12, 083025 (2010)

    Article  ADS  Google Scholar 

  11. P.T. Ernst, S. Götze, J.S. Krauser, K. Pyka, D.S. Lüann, D. Pfannkuche, K. Sengstock, Nat. Phys. 6, 56 (2009)

    Article  Google Scholar 

  12. P. Öhberg, E.L. Surkov, I. Tittonen, S. Stenholm, M. Wilkens, G.V. Shlyapnikov, Phys. Rev. A 56, R3346 (1997)

    Article  ADS  Google Scholar 

  13. E. Zaremba, Phys. Rev. A 57, 518 (1998)

    Article  ADS  Google Scholar 

  14. G.M. Kavoulakis, C.J. Pethick, Phys. Rev. A 58, 1563 (1998)

    Article  ADS  Google Scholar 

  15. S. Stringari, Phys. Rev. A 58, 2385 (1998)

    Article  ADS  Google Scholar 

  16. P.O. Fedichev, G.V. Shlyapnikov, Phys. Rev. A 63, 045601 (2001)

    Article  ADS  Google Scholar 

  17. B. Damski, Phys. Rev. A 69, 043610 (2004)

    Article  ADS  Google Scholar 

  18. K. Berg-Sorensen, K. Molmer, Phys. Rev. A 58, 1480 (1998)

    Article  ADS  Google Scholar 

  19. M. Krämer, C. Menotti, L. Pitaevskii, S. Stringari, Eur. Phys. J. D 27, 247 (2003)

    Article  ADS  Google Scholar 

  20. C. Menotti, M. Krämer, A. Smerzi, L. Pitaevskii, S. Stringari, Phys. Rev. A 70, 023609 (2004)

    Article  ADS  Google Scholar 

  21. I. Danshita, S. Kurihara, S. Tsuchiya, Phys. Rev. A 72, 053611 (2005)

    Article  ADS  Google Scholar 

  22. J.P. Martikainen, H.T.C. Stoof, Phys. Rev. A 69, 023608 (2004)

    Article  ADS  Google Scholar 

  23. M. Krämer, C. Menotti, M. Modugno, J. Low Temp. Phys. 138, 729 (2005)

    Article  ADS  Google Scholar 

  24. E. Taylor, E. Zaremba, Phys. Rev. A 68, 053611 (2003)

    Article  ADS  Google Scholar 

  25. D. Boers, C. Weiss, M. Holthaus, Europhys. Lett. 67, 887 (2004)

    Article  ADS  Google Scholar 

  26. Z.X. Liang, X. Dong, Z.D. Zhang, B. Wu, Phys. Rev. A 78, 023622 (2008)

    Article  ADS  Google Scholar 

  27. W. Zwerger, J. Opt. 5, S9 (2003)

    ADS  Google Scholar 

  28. Y. Hu, Z. Liang, B. Hu, Phys. Rev. A 80, 043629 (2009)

    Article  ADS  Google Scholar 

  29. Y. Hu, Z. Liang, B. Hu, Phys. Rev. A 81, 053621 (2010)

    Article  ADS  Google Scholar 

  30. D. Jaksch, P. Zoller, Ann. Phys. 315, 52 (2005)

    Article  ADS  MATH  Google Scholar 

  31. J.I. Cirac, P. Zoller, Nat. Phys. 8, 264 (2012)

    Article  Google Scholar 

  32. I. Bloch, J. Dalibard, S. Nascimbène, Nat. Phys. 8, 267 (2012)

    Article  Google Scholar 

  33. S. Diehl, A. Micheli, A. Kantian, B. Kraus, H.P. Büchler, P. Zoller, Nat. Phys. 4, 878 (2008)

    Article  Google Scholar 

  34. A.J. Daley, P.O. Fedichev, P. Zoller, Phys. Rev. A 69, 022306 (2004)

    Article  ADS  Google Scholar 

  35. A. Griessner, A.J. Daley, S.R. Clark, D. Jaksch, P. Zoller, Phys. Rev. Lett. 97, 220403 (2006)

    Article  ADS  Google Scholar 

  36. A. Griessner, A.J. Daley, S.R. Clark, D. Jaksch, P. Zoller, New J. Phys. 9, 44 (2007)

    Article  ADS  Google Scholar 

  37. P. Windpassinger, K. Sengstock, Rep. Prog. Phys. 76, 086401 (2013)

    Article  ADS  Google Scholar 

  38. S. Peil, J.V. Porto, B.L. Tolra, J.M. Obrecht, B.E. King, M. Subbotin, S.L. Rolston, W.D. Phillips, Phys. Rev. A 67, 053403(R) (2003)

    Article  Google Scholar 

  39. M. Weitz, G. Cennini, G. Ritt, C. Geckeler, Phys. Rev. A 70, 043414 (2004)

    Article  ADS  Google Scholar 

  40. G. Ritt, C. Geckeler, T. Salger, G. Cennini, M. Weitz, Phys. Rev. A 74, 063622 (2006)

    Article  ADS  Google Scholar 

  41. T. Salger, C. Geckeler, S. Kling, M. Weitz, Phys. Rev. Lett. 99, 190405 (2007)

    Article  ADS  Google Scholar 

  42. T. Salger, C. Grossert, S. Kling, M. Weitz, Phys. Rev. Lett. 107, 240401 (2011)

    Article  ADS  Google Scholar 

  43. A.B. Bhattacherjee, J. Phys. B 40, 143 (2007)

    Article  ADS  Google Scholar 

  44. G. Roati, C. D’Errico, L. Fallani, M. Fattori, C. Fort, M. Zaccanti, G. Modugno, M. Modugno, M. Inguscio, Nature 453, 895 (2008)

    Article  ADS  Google Scholar 

  45. S. Trotzky, P. Cheinet, S. Foelling, M. Feld, U. Schnorrberger, A.M. Rey, A. Polkovnikov, E.A. Demler, M.D. Lukin, I.F. Bloch, Science 319, 295 (2008)

    Article  ADS  Google Scholar 

  46. M. Atala, M. Aidelsburger, J.T. Barreiro, D. Abanin, T. Kitagawa, E. Demler, I. Bloch, Nat. Phys. 9, 795 (2013)

    Article  Google Scholar 

  47. S.L. Zhu, Z.D. Wang, Y.H. Chan, L.M. Duan, Phys. Rev. Lett. 110, 075303 (2013)

    Article  ADS  Google Scholar 

  48. Z.H. Xu, L.H. Li, S. Chen, Phys. Rev. Lett. 110, 215301 (2013)

    Article  ADS  Google Scholar 

  49. J.I. Cirac, P. Maraner, J.K. Pachos, Phys. Rev. Lett. 105, 190403 (2010)

    Article  ADS  Google Scholar 

  50. S. Fölling, S. Trotzky, P. Cheinet, M. Feld, R. Saers, A. Widera, T. Müller, I.F. Bloch, Nature 448, 1029 (2007)

    Article  ADS  Google Scholar 

  51. L. Wang, M. Troyer, X. Dai, Phys. Rev. Lett. 111, 026802 (2013)

    Article  ADS  Google Scholar 

  52. F.S. Cataliotti et al., Science 293, 843 (2001)

    Article  ADS  Google Scholar 

  53. D.S. Petrov, G.V. Shlyapnikov, J.T.M. Walraven, Phys. Rev. Lett. 87, 050404 (2001)

    Article  ADS  Google Scholar 

  54. Y. Hu, Z. Liang, Phys. Rev. Lett. 107, 110401 (2011)

    Article  ADS  Google Scholar 

  55. Y. Hu, Z. Liang, Mod. Phys. Lett. B 27, 1330010 (2013)

    Article  ADS  Google Scholar 

  56. M. Olshanii, Phys. Rev. Lett. 81, 938 (1998)

    Article  ADS  Google Scholar 

  57. C. Menotti, S. Stringari, Phys. Rev. A 66, 043610 (2002)

    Article  ADS  Google Scholar 

  58. B. Wu, Q. Niu, Phys. Rev. A 64, 061603 (2001)

    Article  ADS  Google Scholar 

  59. B. Wu, Q. Niu, New J. Phys. 5, 104 (2003)

    Article  ADS  Google Scholar 

  60. A. Smerzi, A. Trombettoni, Phys. Rev. A 68, 023613 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  61. L.J. Lang, X.M. Cai, S. Chen, Phys. Rev. Lett. 108, 220401 (2012)

    Article  ADS  Google Scholar 

  62. C. Chin, R. Grimm, P. Julienne, E. Tiesinga, Rev. Mod. Phys. 82, 1225 (2010)

    Article  ADS  Google Scholar 

  63. L.A. Sidorenkov, M.K. Tey, R. Grimm, Y.H. Hou, L. Pitaevskii, S. Stringari, Nature 498, 78 (2013)

    Article  ADS  Google Scholar 

  64. L. Chen, W. Li, Z. Chen, Z. Zhang, Z. Liang, J. Low. Temp. Phys. 177, 291 (2014)

    Article  ADS  Google Scholar 

  65. L. Salasnich, A. Parola, L. Reatto, Phys. Rev. A 65, 043614 (2002)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaoxin Liang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, L., Chen, Z., Li, W. et al. Unusual behavior of sound velocity of a Bose gas in an optical superlattice at quasi-one-dimension. Eur. Phys. J. D 68, 375 (2014). https://doi.org/10.1140/epjd/e2014-50489-3

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2014-50489-3

Keywords

Navigation