Skip to main content
Log in

Temperature Effect on Magnetopolaronic Vibrational Frequency in an Anisotropic Quantum Dot

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

We study the temperature effects of the vibrational frequency, the ground state energy and the ground state binding energy of the strong-coupling magnetopolaron in an anisotropic quantum dot. The vibrational frequency, the ground state energy and the ground state binding energy are expressed as functions of the temperature, the cyclotron frequency of a magnetic field and the electron-phonon coupling strength by using linear combination operator and unitary transformation methods. It is found that these quantities will increase with increasing temperature and cyclotron frequency of a magnetic field. The vibrational frequency and the ground state binding energy are increasing functions of the electron-phonon coupling strength, whereas the ground state energy is an decreasing one of it.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.Y. Chen, P.W. Jin, W.S. Li, D.L. Lin, Phys. Rev. B 56, 14913 (1997)

    Article  ADS  Google Scholar 

  2. T. Demel, D. Heitman, P. Grambow, K. Ploog, Phys. Rev. Lett. 64, 788 (1990)

    Article  ADS  Google Scholar 

  3. A.I. Yakimov, A.V. Dvurechenskii, G.M. Minkov, A.A. Sherstobitov, A.I. Nikiforov, A.A. Bloshkin, J. Exp. Theor. Phys. 100, 722 (2005)

    Article  ADS  Google Scholar 

  4. J.R. Santos, M.I. Vasilevskiy, S.A. Filonovich, Phys. Rev. B 78, 245422 (2008)

    Article  ADS  Google Scholar 

  5. V.G. Storchak, O.E. Parfenov, J.H. Brewer, P.L. Russo, S.L. Stubbs, R.L. Lichti, D.G. Eshchenko, E. Morenzoni, T.G. Aminov, V.P. Zlomanov, A.A. Vinokurov, P.L. Kallaher, S.V. Molnar, Phys. Rev. B 80, 235203 (2009)

    Article  ADS  Google Scholar 

  6. S.S. Li, J.B. Xia, J. Appl. Phys. 100, 083714 (2006)

    Article  ADS  Google Scholar 

  7. S.S. Li, J.B. Xia, Appl. Phys. Lett. 91, 092119 (2007)

    Article  ADS  Google Scholar 

  8. S.S. Li, J.B. Xia, Phys. Lett. A 366, 120 (2007)

    Article  ADS  Google Scholar 

  9. Y. Lepine, G. Bruneau, J. Phys., Condens. Matter 10, 1495 (1998)

    Article  ADS  Google Scholar 

  10. R. Charrour, M. Bouhassoune, M. Fliyon, A. Nougaoui, Physica B 293, 137 (2000)

    Article  ADS  Google Scholar 

  11. J.E. Khamkhami, E. Feddi, E. Assaid, E. Assaid, F. Dujardin, B. Stebe, M.E. Haouari, Physica E 25, 366 (2005)

    Article  ADS  Google Scholar 

  12. W. Xiao, J.L. Xiao, Int. J. Mod. Phys. B 21, 2007 (2007)

    Article  MATH  ADS  Google Scholar 

  13. C.Y. Chen, P.W. Jin, W.S. Li, D.L. Lin, Phys. Rev. B 56, 14913 (1997)

    Article  ADS  Google Scholar 

  14. H.Y. Zhou, S.W. Gu, Y.M. Shi, Mod. Phys. Lett. B 12, 693 (1998)

    Article  ADS  Google Scholar 

  15. V.L. Nguyen, M.T. Nguyen, T.D. Nguyen, Physica B 292, 153 (2000)

    Article  ADS  Google Scholar 

  16. B.S. Kandemir, A. Cetin, Phys. Rev. B 65, 054303 (2002)

    Article  ADS  Google Scholar 

  17. L. Jacak, J. Krasnyj, D. Jacak, P. Machnikowski, Phys. Rev. B 67, 035303 (2003)

    Article  ADS  Google Scholar 

  18. B.S. Kandemir, T. Altanhan, Eur. Phys. J. B 33, 227 (2003)

    Article  ADS  Google Scholar 

  19. R.Q. Wang, H.J. Xie, Y.B. Yu, Int. J. Mod. Phys. B 18, 2887 (2004)

    Article  MATH  ADS  Google Scholar 

  20. B.S. Kandemir, A. Cetin, J. Phys., Condens. Matter 17, 667 (2005)

    Article  ADS  Google Scholar 

  21. A.J. Peter, Int. J. Nanosci. 5, 173 (2006)

    Article  Google Scholar 

  22. A.J. Peter, Int. J. Mod. Phys. B 17, 3035 (2007)

    Article  ADS  Google Scholar 

  23. A.L. Vartanian, L.A. Vardanyan, E.M. Kazaryan, Physica E 40, 1513 (2008)

    Article  ADS  Google Scholar 

  24. S.H. Chen, J.L. Xiao, Int. J. Mod. Phys. B 21, 5331 (2007)

    Article  MATH  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing-Lin Xiao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, ZX., Ding, ZH. & Xiao, JL. Temperature Effect on Magnetopolaronic Vibrational Frequency in an Anisotropic Quantum Dot. J Low Temp Phys 159, 592–600 (2010). https://doi.org/10.1007/s10909-010-0164-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-010-0164-9

Keywords

Navigation