Skip to main content

Fundamentals of Thermal Sensors

  • Chapter
  • First Online:
Thermal Sensors

Abstract

Thermal sensors are found in many items, from commonplace items inside any home to more sophisticated applications. You can find sensors in household electronics like thermostats or thermometers. You will also find sensors in things as sophisticated as your personal computer or in a microprocessor. It is vital for processors to stay within the temperature range specification to perform reliably and for the processor to run at its expected speed performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anliker, U., Ward, J. a, Lukowicz, P., Tröster, G., Dolveck, F., Baer, M., Keita, F., Schenker, E.B., Catarsi, F., Coluccini, L., Belardinelli, A., Shklarski, D., Alon, M., Hirt, E., Schmid, R., Vuskovic, M.: AMON: A Wearable Multiparameter Medical Monitoring and Alert System. IEEE Trans. Inf. Technol. Biomed. 8(4), 415–27 (2004).

    Google Scholar 

  • Bakker, A. (2002): CMOS smart temperature sensors—An Overview. Proceedings of IEEE Sensors 2002. pp. 1423–1427. IEEE (2002).

    Google Scholar 

  • Bedford, R.E., Bonnier, G., Maas, H., Pavese, F.: Recommended values of temperature on the International Temperature Scale of 1990 for a selected set of secondary reference points. Metrologia. 33, 133–154 (1996).

    Google Scholar 

  • Berger, L.I.: Properties of Semiconductors. In: Haynes, W.M. (ed.) CRC Handbook of Chemistry and Physics, 94th Edition. pp. 12–80 – 12–93. CRC Press (2013).

    Google Scholar 

  • Bergman, T.L., Lavin, A.S., Incropera, F.P., Dewitt, D.P.: Fundamentals of Heat and Mass Transfer, Seventh Edition. John Wiley & Sons (2011).

    Google Scholar 

  • Biró, T.S.: How to Measure Temperature. In: Biró, T.S. (ed.) Is There a Temperature? Conceptual Challenges at High Energy, Acceleration and Complexity. Fundamentals Theories of Physics, vol 171,. pp. 5–27. Springer New York, New York, NY (2011).

    Google Scholar 

  • Dames, C.: Resistance Temperature Detectors. In: Li, D. (ed.) Encyclopedia of Microfluidics and Nanofludics. pp. 1782–1790. Springer US (2008).

    Google Scholar 

  • Desmarais, R., Breuer, J.: How to Select and Use the Right Temperature Sensor. Sensors Online, http://archives.sensorsmag.com/articles/0101/24/index.htm, (2001).

  • Fujinami, K., Xue, Y., Murata, S., Hosokawa, S.: A Human-Probe System That Considers On-body Position of a Mobile Phone. In: Streitz, N. and Stephanidis, C. (eds.) Distributed, Ambient, and Pervasive Interactions - First International Conference, DAPI /HCII 2013. Lecture Notes in Computer Science, vol. 8028. pp. 99–108. Springer Berlin Heidelberg (2013).

    Google Scholar 

  • Habashi, F.: Silicon, Physical and Chemical Properties. In: Kretsinger, R.H., Uversky, V.N., and Permyakov, E.. (eds.) Encyclopedia of Metalloproteins. pp. 1998–2000. Springer New York (2013).

    Google Scholar 

  • Hall, L.A.: Survey of Electrical Resistivity Measurements on 16 Pure Metals in the Temperature Range 0 to 273K. NBS Tech. Note 365. February, 1–111 (1968).

    Google Scholar 

  • Ho, C.Y., Powell, R.W., Liley, P.E.: Thermal Conductivity of the Elements. J. Phys. Chem. Ref. Data. 1(2), 279–421 (1972).

    Google Scholar 

  • Janata, J.: Thermal Sensors. Principles of Chemical Sensors. pp. 51–62. Springer US (2009).

    Google Scholar 

  • Johnstone, J. a, Ford, P. a, Hughes, G., Watson, T., Garrett, A.T.: Bioharness(TM) Multivariable Monitoring Device. Part. I: Validity. J. Sports Sci. Med. 11(3), 400–8 (2012).

    Google Scholar 

  • Kenny, T.: Sensor Fundamentals. In: Wilson, J.S. (ed.) Sensor Technology Handbook. pp. 1–20. Elsevier Science & Technology (2004).

    Google Scholar 

  • Lane, N.D., Miluzzo, E., Lu, H., Peebles, D., Choudhury, T.: A Survey of Mobile Phone Sensing. IEEE Commun. Mag. 48(9), 140–150 (2010).

    Google Scholar 

  • Love, J.: Temperature Measurement. In: Love, J. (ed.) Process Automation Handbook - A Guide to Theory and Practice. pp. 99–106. Springer US (2007).

    Google Scholar 

  • Mekid, S., Starr, A., Pietruszkiewicz, R.: Intelligent Wireless Sensors. In: Holmberg, K., Adgar, A., Arnaiz, A., Jantunen, E., Mascolo, J., and Mekid, S. (eds.) E-maintenance. pp. 83–123. Springer London (2010).

    Google Scholar 

  • Mukhopadhyay, S.C.: Wireless Sensors and Sensors Network. In: Mukhopadhyay, S.C. (ed.) Intelligent Sensing, Instrumentation and Measurement. Smart Sensor, Measurement, and Instrumentation, vol. 5. pp. 55–69. Springer Berlin Heidelberg (2013).

    Google Scholar 

  • Nicholas, J. V., White, D.R.: Traceable Temperatures - An Introduction to Temperature Measurement and Calibration, Second Edition. John Wiley & Sons (2001).

    Google Scholar 

  • Peterson, K.E.: Silicon as a Mechanical Material. Microelectron. Reliab. 23, 403 (1983).

    Google Scholar 

  • Preston-Thomas, H.: The International Temperature Scale of 1990 (ITS-90). Metrologia. 27(3), 3–10 (1990).

    Google Scholar 

  • Roozeboom, C.L., Hopcroft, M.A., Smith, W.S., Sim, J.Y., Member, S., Wickeraad, D.A., Hartwell, P.G., Pruitt, B.L.: Integrated Multifunctional Environmental Sensors. J. Microelectromechanical Syst. 22(3), 779–793 (2013).

    Google Scholar 

  • Rotem, E., Hermerding, J., Aviad, C., Harel, C.: Temperature Measurement in the Intel Core Duo Processor. Procceedings of the 12th International Workshop on Thermal Investigations, Therminic, Nice 2006. EDA Publishing Association (2006).

    Google Scholar 

  • Serway, R.A.: Physics: For Scientists and Engineers with Modern Physics, 3rd Edition. Saunders College Publishing, Philedelphia (1990).

    Google Scholar 

  • Sharifi, S., Liu, C., Rosing, T.S.: Accurate Temperature Estimation for Efficient Thermal Management. 9th Int. Symp. Qual. Electron. Des. 137–142 (2008).

    Google Scholar 

  • Talavera, G., Martin, R., Rodríguez-alsina, A., Garcia, J., Fernández, F., Carrabina, J.: Protecting Firefighters with Wearable Devices. In: Bravo, J., López-de-Ipiña, D., and Moya, F. (eds.) Ubiquitous Computing and Ambient Intelligence. Lecture Notes in Computer Science, vol. 7657. pp. 470–477. Springer Berlin Heidelberg (2012).

    Google Scholar 

  • Tomsen, V.: Response Time of a Thermometer. Phys. Teach. 36, 540–541 (1998).

    Google Scholar 

  • Touloukian, Y.S., Kirby, R.K., Taylor, R.E., Desai, P.D.: Thermal Expansion - Metallic Elements and Alloys. In: Touloukian, Y.S., Kirby, R.K., Taylor, R.E., and Desai, P.D. (eds.) The TPRC Data Series, vol 12. Plenum Publishing Corporation (1975).

    Google Scholar 

  • Wagman, D.D., Evans, W.H., Parker, V.B., Schumm, R.H., Halo, I., Bailey, S.M., Churney, K.L., Nuttall, R.L.: The NBS Tables of Chemical Thermodynamic Properties. J. Phys. Chem. Data. 11, Supp., 1–392 (1982).

    Google Scholar 

  • Yacobi, B.G.: Semiconductor Materials : An Introduction to Basic Principles. Kluwer Academic Publishers, Secaucus, NJ (2002).

    Google Scholar 

  • The RTD. Omega Engineering Inc., http://www.omega.com/temperature/Z/TheRTD.html (2014) Accessed 4 May 2014.

  • ANSI and IEC Color Codes for Thermocouples, Wire and Connectors/Thermocouple Tolerances. Omega Engineering Inc., http://www.omega.com/temperature/pdf/tc_colorcodes.pdf (2014) Accessed 05 May 2014.

  • Electrical Conductivity and Resistivity. NTD Resource Center., http://www.ndt-ed.org/EducationResources/CommunityCollege/Materials/Physical_Chemical/Electrical.htm (2014) Accessed 04 June 2014.

  • Physical Properties of Thermoelement Material. Omega Engineering Inc., http://www.omega.com/temperature/Z/pdf/z016.pdf (2014) Accessed 04 May 2014.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thu Huynh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Huynh, T. (2015). Fundamentals of Thermal Sensors. In: Jha, C. (eds) Thermal Sensors. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2581-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2581-0_2

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-2580-3

  • Online ISBN: 978-1-4939-2581-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics