Skip to main content
Log in

Superfluid to Mott insulator transition in one, two, and three dimensions

  • Original Article
  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

No Heading

We have created one-, two-, and three-dimensional quantum gases and study the superfluid to Mott insulator transition. Measurements of the transition using Bragg spectroscopy show that the excitation spectra of the low-dimensional superfluids differ significantly from the three-dimensional case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. 1. W. Ketterle and N. J. van Druten, Phys. Rev. A 54, 61 (1996).

    Google Scholar 

  2. 2. D. S. Petrov, M. Holzmann, and G. V. Shlyapnikov, Phys. Rev. Lett. 84, 2251 (2000).

    Google Scholar 

  3. 3. T. Giamarchi, Quantum Physics in One Dimension, Oxford 2004.

    Google Scholar 

  4. 4. M. Girardeau, J. Math. Phys. 1, 516 (1960).

    Google Scholar 

  5. 5. V. L. Berezinskii, Sov. Phys. JETP 32 493 (1971) and Sov. Phys. JETP 34 610 (1972); J. M. Kosterlitz and D. J. Thouless J. Phys. C 6 1181 (1973) and J. Phys. C. 7, 1046 (1974).

    Google Scholar 

  6. 6. H. Moritz, T. Stöferle, M. Köhl, T. Esslinger, Phys. Rev. Lett. 91, 250402 (2003).

    Google Scholar 

  7. 7. A. Görlitz et al., Phys. Rev. Lett. 87, 130402 (2001).

    Google Scholar 

  8. 8. F. Schreck et al., Phys. Rev. Lett. 87, 080403 (2001).

    Google Scholar 

  9. 9. M. Greiner, I. Bloch, O. Mandel, T.W. Hänsch, and T. Esslinger, Phys. Rev. Lett. 87, 160405 (2001).

    Google Scholar 

  10. 10. E. H. Lieb and W. Liniger, Phys. Rev. 130, 1605 (1963); E. H. Lieb, Phys. Rev. 130, 1616 (1963).

    Google Scholar 

  11. 11. M. Olshanii, Phys. Rev. Lett. 81, 938 (1998); V. Dunjko, V. Lorent, M. Olshanii, Phys. Rev. Lett. 86, 5413 (2001).

    Google Scholar 

  12. 12. T.-L. Ho and M. Ma, J. Low Temp. Phys. 115, 61 (1999).

    Google Scholar 

  13. 13. D. S. Petrov, G. V. Shlyapnikov, J. T. M. Walraven, Phys. Rev. Lett. 85, 3745 (2000).

    Google Scholar 

  14. 14. Yu. Kagan, N. V. Prokofev, and B. V. Svistunov, Phys. Rev. A 61, 045601 (2000).

    Google Scholar 

  15. 15. M. D. Girardeau, E. M. Wright, and J. M. Triscari, Phys. Rev. A 63, 033601 (2001).

    Google Scholar 

  16. 16. C. Menotti and S. Stringari, Phys. Rev. A 66, 043610 (2002).

    Google Scholar 

  17. 17. T. Stöferle, H. Moritz, C. Schori, M. Köhl, T. Esslinger, Phys. Rev. Lett. 92, 130403 (2004).

    Google Scholar 

  18. 18. A. I. Safonov, S. A. Vasilyev, I. S. Yasnikov, I. I. Lukashevich, and S. Jaakkola, Phys. Rev. Lett. 81, 4545 (1998).

    Google Scholar 

  19. 19. C. Orzel, A. K. Tuchman, M. L. Fenselau, M. Yasuda, M. A. Kasevich, Science 291, 2386 (2001).

    Google Scholar 

  20. 20. D. Rychtarik, B. Engeser, H.-C. Nägerl, and R. Grimm, e-print cond-mat/0309536 (2003).

  21. 21. V. Schweikhard, I. Coddington, P. Engels, V. P. Mogendor, and E. A. Cornell, Phys. Rev. Lett. 92, 040404 (2004).

    Google Scholar 

  22. 22. M. P. A. Fischer, P. B. Weichmann, G. Grinstein, D. S. Fisher, Phys. Rev. B 40, 546 (1989).

    Google Scholar 

  23. 23. D. Jaksch et al., Phys. Rev. Lett. 81, 3108 (1998).

    Google Scholar 

  24. 24. M. Greiner et al., Nature 415, 39 (2002).

    Google Scholar 

  25. 25. T. D. Kühner, H. Monien, Phys. Rev. B 58, 14741 (1998).

    Google Scholar 

  26. 26. G. G. Batrouni et al., Phys. Rev. Lett. 89, 117203 (2002).

    Google Scholar 

  27. 27. T. Esslinger, I. Bloch, T. W. Hänsch, Phys. Rev. A 58, 2664 (1998).

    Google Scholar 

  28. 28. J. Stenger et al., Phys. Rev. Lett. 82, 4569 (1999).

    Google Scholar 

  29. 29. C. Menotti, M. Krämer, L. Pitaevskii, S. Stringari, Phys. Rev. A 67, 053609 (2003).

    Google Scholar 

  30. 30. M. Krämer, C. Menotti, L. Pitaevskii, S. Stringari, Eur. Phys. J. D 27, 247 (2003).

    Google Scholar 

  31. 31. N. M. Hugenholtz, D. Pines, Phys. Rev. 116, 489 (1959).

    Google Scholar 

  32. 32. H. P. Büchler, G. Blatter, e-print cond-mat/0312526 (2003).

  33. 33. J. C. Bronski, L. D. Carr, B. Deconinck, J. N. Kutz, Phys. Rev. Lett. 86, 1402 (2001).

    Google Scholar 

  34. 34. M. Krämer, private communication.

  35. 35. Acknowledgments: This work was supported by ETH and SNF. T.E. would like to acknowledge the hospitality of the Aspen Center for Physics during the workshop “Exploring the Interface Between Cold Atoms and Condensed Matter Physics: From Strong Correlation To Entanglement”.

Download references

Author information

Authors and Affiliations

Authors

Additional information

PACS numbers: 05.30.Jp, 03.75.Kk, 03.75.Lm, 73.43.Nq

Rights and permissions

Reprints and permissions

About this article

Cite this article

Köhl, M., Moritz, H., Stöferle, T. et al. Superfluid to Mott insulator transition in one, two, and three dimensions. J Low Temp Phys 138, 635–644 (2005). https://doi.org/10.1007/s10909-005-2273-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-005-2273-4

Keywords

Navigation