Skip to main content
Log in

Engineering Weyl Superfluid in Ultracold Fermionic Gases by One-Dimensional Optical Superlattices

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

In this paper, we theoretically demonstrate by using one-dimensional superlattices to couple two-dimensional time-reversal-breaking gapped topological superfluid models, an anomalous Weyl superfluid (WS) can be obtained. This new phase features its unique Fermi arc states (FAS) on the surfaces. In the conventional WS, FAS exist only for a part of the line connecting the projections of Weyl points and extending to the border and/or center of surface Brillouin zone. But for the anomalous WS, FAS exist for the whole line. As a proof of principle, we self-consistently at the mean-field level claim the achievement of the anomalous WS in the model with a dichromatic superlattice. In addition, inversion symmetry and band inversion in this model are analyzed to provide the unique features of identifying the anomalous WS experimentally by the momentum-resolved radio-frequency spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. T. Meng, L. Balents, Phys. Rev. B 86, 054504 (2012)

    Article  ADS  Google Scholar 

  2. J.D. Sau, S. Tewari, Phys. Rev. B 86, 104509 (2012)

    Article  ADS  Google Scholar 

  3. N.F.Q. Yuan, W.-Y. He, K.T. Law, Phys. Rev. B 95, 201109 (2017)

    Article  ADS  Google Scholar 

  4. G.Y. Cho, J.H. Bardarson, Y.-M. Lu, J.E. Moore, Phys. Rev. B 86, 214514 (2012)

    Article  ADS  Google Scholar 

  5. G. Bednik, A.A. Zyuzin, A.A. Burkov, Phys. Rev. B 92, 035153 (2015)

    Article  ADS  Google Scholar 

  6. W.W. Krempa, M. Knap, D. Abanin, Phys. Rev. Lett. 113, 136402 (2014)

    Article  ADS  Google Scholar 

  7. M. Gong, S. Tewari, C. Zhang, Phys. Rev. Lett. 107, 195303 (2011)

    Article  ADS  Google Scholar 

  8. Y. Xu, R.-L. Chu, C. Zhang, Phys. Rev. Lett. 112, 136402 (2014)

    Article  ADS  Google Scholar 

  9. Y. Xu, F. Zhang, C. Zhang, Phys. Rev. Lett. 115, 265304 (2015)

    Article  ADS  Google Scholar 

  10. B. Liu, X. Li, L. Yin, W.V. Liu, Phys. Rev. Lett. 114, 045302 (2015)

    Article  ADS  Google Scholar 

  11. H. Hu, L. Dong, Y. Cao, H. Pu, X.-J. Liu, Phys. Rev. A 90, 033624 (2014)

    Article  ADS  Google Scholar 

  12. X.-J. Liu, H. Hu, H. Pu, Chin. Phys. B 24, 050502 (2015)

    Article  ADS  Google Scholar 

  13. L.-J. Lang, S.-L. Zhang, K.T. Law, Q. Zhou, Phys. Rev. B 96, 035145 (2017)

    Article  ADS  Google Scholar 

  14. W.-Y. He, S. Zhang, K.T. Law, Phys. Rev. A 94, 013606 (2016)

    Article  ADS  Google Scholar 

  15. T. Dubček, C.J. Kennedy, L. Lu, W. Ketterle, M. Soljačić, H. Buljan, Phys. Rev. Lett. 114, 225301 (2015)

    Article  ADS  Google Scholar 

  16. X.-Y. Mai, D.-W. Zhang, Z. Li, S.-L. Zhu, Phys. Rev. A 95, 063616 (2017)

    Article  ADS  Google Scholar 

  17. G.E. Volovik, Universe in a Helium Droplet (Oxford University Press, Oxford, 2003)

    MATH  Google Scholar 

  18. X. Wan, A.M. Turner, A. Vishwanath, S.Y. Savrasov, Phys. Rev. B 83, 205101 (2011)

    Article  ADS  Google Scholar 

  19. Z. Fang, N. Nagaosa, K.S. Takahashi, A. Asamitsu, R. Mathieu, T. Ogasawara, H. Yamada, M. Kawasaki, Y. Tokura, K. Terakura, Science 302, 92 (2003)

    Article  ADS  Google Scholar 

  20. C.-M. Jian, X.-L. Qi, Phys. Rev. X 4, 041043 (2014)

    Google Scholar 

  21. K.B. Efetov, Sov. Phys. JETP 49, 905 (1979)

    ADS  Google Scholar 

  22. S.L. Sondhi, K. Yang, Phys. Rev. B 63, 054430 (2001)

    Article  ADS  Google Scholar 

  23. V.J. Emery, E. Fradkin, S.A. Kivelson, T.C. Lubensky, Phys. Rev. Lett. 85, 2160 (2000)

    Article  ADS  Google Scholar 

  24. A. Vishwanath, D. Carpentier, Phys. Rev. Lett. 86, 676 (2001)

    Article  ADS  Google Scholar 

  25. C.L. Kane, R. Mukhopadhyay, T.C. Lubensky, Phys. Rev. Lett. 88, 036401 (2002)

    Article  ADS  Google Scholar 

  26. J.C.Y. Teo, C.L. Kane, Phys. Rev. B 89, 085101 (2014)

    Article  ADS  Google Scholar 

  27. C. Wang, T. Senthil, Phys. Rev. B 87, 235122 (2013)

    Article  ADS  Google Scholar 

  28. B. Huang, C.F. Chang, M. Gong, Phys. Rev. B 91, 134512 (2014)

    Article  ADS  Google Scholar 

  29. T. Fukui, Y. Hatsugai, H. Suzuki, J. Phys. Soc. Jpn. 74, 1674 (2005)

    Article  ADS  Google Scholar 

  30. B. Huang, X. Yang, S. Wan, J. Phys. B 46, 025301 (2013)

    Article  ADS  Google Scholar 

  31. S. Trotzky, Y.-A. Chen, U. Schnorrberger, P. Cheinet, I. Bloch, Phys. Rev. Lett. 105, 265303 (2010)

    Article  ADS  Google Scholar 

  32. M. Randeria, J.-M. Duan, L.-Y. Shieh, Phys. Rev. Lett. 62, 981 (1989)

    Article  ADS  Google Scholar 

  33. G. Chen, M. Gong, C. Zhang, Phys. Rev. A 85, 013601 (2012)

    Article  ADS  Google Scholar 

  34. C. Nayak, S.H. Simon, A. Stern, M. Freedman, S. Das, Sarma. Rev. Mod. Phys. 80, 1083 (2008)

    Article  ADS  Google Scholar 

  35. L. Fu, C.L. Kane, Phys. Rev. B 76, 045302 (2007)

    Article  ADS  Google Scholar 

  36. Y. Ando, J. Phys. Soc. Jpn. 82, 102001 (2013)

    Article  ADS  Google Scholar 

  37. Z. Fu, L. Huang, Z. Meng, P. Wang, X.-J. Liu, H. Pu, H. Hu, J. Zhang, Phys. Rev. A 87, 053619 (2013)

    Article  ADS  Google Scholar 

  38. J. Zhang, H. Hu, X.-J. Liu and H. Pu. arXiv:1411.3043 (2014)

  39. S.-G. Peng, X.-J. Liu, H. Hu, K. Jiang, Phys. Rev. A 86, 063610 (2012)

    Article  ADS  Google Scholar 

  40. Y. Dong, L. Dong, M. Gong, H. Pu, Nat. Commun. 6, 6103 (2015)

    Article  ADS  Google Scholar 

  41. M. Sato, Y. Takahashi, S. Fujimoto, Phys. Rev. Lett. 103, 020401 (2009)

    Article  ADS  Google Scholar 

  42. A. Kubasiak, P. Massignan, M. Lewenstein, Europhys. Lett. 92, 46004 (2010)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

B. H. was supported by National Natural Science Foundation of China under Grant No. 11547047.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beibing Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, B. Engineering Weyl Superfluid in Ultracold Fermionic Gases by One-Dimensional Optical Superlattices. J Low Temp Phys 190, 78–89 (2018). https://doi.org/10.1007/s10909-017-1822-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-017-1822-y

Keywords

Navigation