Skip to main content
Log in

Masking Behavior by Mepraia spinolai (Hemiptera: Reduviidae): Anti-predator Defense and Life History Trade-offs

  • Published:
Journal of Insect Behavior Aims and scope Submit manuscript

Abstract

Masking, a type of camouflage, has been argued to function as an anti-predator mechanism helping to avoid detection or recognition by a prey or predator. However, research focused on the effects of masking on life history traits is scarce. We evaluated under laboratory conditions whether developmental time and survivorship in the absence of predators, and the probability to be predated by a potential predator are affected when the blood-feeding triatomine Mepraia spinolai masks with sand particles. Theoretically, it is expected to find a positive anti-predator effect of masking and the presence of trade-offs between development time and survival. We assigned M. spinolai nymphs to a masked or non-masked treatment and subjected them to a lizard, a potential predator. Results show masked nymphs reach the fifth instar faster and survive longer than non-masked nymphs, which is inconsistent with the trade-offs hypothesis we expected to find. In predation experiments, higher number of masked nymphs detected lizards before lizards detected them compared to non-masked nymphs. We suggest that masking may be an adaptation to the extreme climatic conditions the nymphs must face, and seems to render selective advantages to M. spinolai nymphs even in the absence of selective forces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ambrose DP (1986) Impact of nymphal camouflaging on predation and cannibalism in the bug Acanthaspis siva. Env Ecol 4:19–200

    Google Scholar 

  • Berke SK, Woodin SA (2008) Energetic costs, ontogenic shifts and sexual dimorphism in spider crab decoration. Funct Ecol 22:1125–1133

    Google Scholar 

  • Botto-Mahan C, Cattan PE, Canals M (2002) Field tests of carbon dioxide and conspecifics as baits for Mepraia spinolai, vector of Chagas disease. Acta Trop 82:377–380

    Article  PubMed  Google Scholar 

  • Botto-Mahan C, Ortiz S, Rozas M, Cattan P, Solari A (2005) DNA evidence of Trypanosoma cruzi in the Chilean wild vector Mepraia spinolai (Hemiptera: Reduviidae). Mem Inst Oswaldo Cruz 100:237–239

    Article  PubMed  Google Scholar 

  • Botto-Mahan C, Cattan PE, Medel R (2006) Chagas disease parasite induces behavioural changes in the kissing bug Mepraia spinolai. Acta Trop 98:219–223

    Article  PubMed  Google Scholar 

  • Brandt M, Mahsberg D (2002) Bugs with a backpack: the function of nymphal camouflage in the West African assassin bugs Paredocla and Acanthaspis spp. Anim Behav 63:277–284

    Article  Google Scholar 

  • di Castri F, Hajek ER (1976) Bioclimatología de Chile. Ediciones de la Universidad Católica de Chile, Santiago

    Google Scholar 

  • Ehrenfeld MJ, Canals M, Cattan PE (1998) Population parameters of Triatoma spinolai (Heteroptera: Reduviidae) under different environmental conditions and densities. J Med Entomol 35:740–744

    PubMed  CAS  Google Scholar 

  • Eisner T, Carrel JE, Van Tassel E, Hoebeke ER, Eisner M (2002) Construction of a defensive trash packet from sycamore leaf trychomes by a chrysopid larva (Neuroptera: Chrysopidae). Proc Entomol Soc Wash 104:437–446

    Google Scholar 

  • Endler JA (1978) A predator’s view of animal color patterns. Evol Biol 11:319–364

    Google Scholar 

  • Endler JA (1986) Defense against predators. In: Feder ME, Lauder GV (eds) Predator–prey relationships: perspectives and approaches from the study of lower vertebrates. University of Chicago Press, Chicago, pp 109–134

    Google Scholar 

  • Haridass ET, Balu A, Morrison MN (1987) Feeding and behavioural parameters and egg ultrastructure in the biosystematics of Reduviidae (Insecta-Heteroptera). Proc Indian Acad Sci (Anim Sci) 96:485–497

    Article  Google Scholar 

  • Hultgren KM, Stachowicz JJ (2008) Alternative camouflage strategies mediate predation risk among closely related co-ocurring kelp crabs. Oecologia 155:519–528

    Article  PubMed  Google Scholar 

  • Jackson RR, Pollard SD (2007) Bugs with backpacks deter vision-guided predation by jumping spiders. J Zoo 273:358–363

    Article  Google Scholar 

  • Kollien AH, Schaub GA (2000) The development of Trypanosoma cruzi in Triatominae. Parasitol Today 16:381–387

    Article  PubMed  CAS  Google Scholar 

  • Lent H, Wygodzinsky P (1979) Revision of the triatominae (Hemiptera: Reduviidae) and their significance as vectors of Chagas disease. Bull Am Mus Nat Hist 163:130–138

    Google Scholar 

  • Lent H, Jurberg J, Galvão C (1994). Revalidaçao de genero Mepraia Mazza, Gajardo and Jörg (1940) (Hemiptera, Reduviidae, Triatominae). Mem Inst Oswaldo Cruz 89:347–352

  • McMahan EA (1982) Bait-and-capture strategy of a termite-eating assassin bug. Insect Soc 29:346–351

    Article  Google Scholar 

  • McMahan EA (1983) Adaptations, feeding preferences, and biometrics of a termite-baiting assassin bug (Hemiptera: Reduviidae). Ann Entomol Soc Am 76:483–486

    Google Scholar 

  • Merilaita S (2003) Visual background complexity facilitates de evolution of camouflage. Evolution 57:1248–1254

    PubMed  Google Scholar 

  • Odhiambo TR (1958) Some observations on the natural history of Acanthaspis petax Stål (Hemiptera: Reduviidae) living in termite mounds in Uganda. Proc R Entomol Soc A 33:167–175

    Google Scholar 

  • Otto C, Svensson BS (1980) The significance of case material selection for the survival of caddis larvae. J Anim Ecol 49:855–865

    Article  Google Scholar 

  • Reznick D (1985) Cost of reproduction: an evaluation of the empirical evidence. OKIS 44:257–267

    Google Scholar 

  • Richner H, Milinski M (2000) Note on the functional significance of masking behaviour in sea urchins-an experiment with Paracentrotus lividus. Mar Ecol Prog Ser 205:307–308

    Article  Google Scholar 

  • Ruxton GD, Sherratt TN, Speed MP (2004) Avoiding attack: the evolutionary ecology of crypsis, warning signals and mimicry. Oxford University Press, Oxford

    Book  Google Scholar 

  • Sagua H, Araya J, González J, Neira I (2000) Mepraia spinolai in the Southeastern Pacific Ocean Cost (Chile)-First insular record and feeding pattern on the Pan de Azúcar Island. Mem Inst Oswaldo Cruz 95:167–170

    Article  Google Scholar 

  • Sokal RR, Rohlf FJ (1995) Biometry. The principles and practice of statistics in biological research. WH Freeman & Company, New York

    Google Scholar 

  • Stearns SC (1989) Trade-offs in life history evolution. Funct Ecol 3:259–268

    Article  Google Scholar 

  • Stearns SC (1992) The Evolution of Life Histories. Oxford University Press, Oxford

    Google Scholar 

  • Stevens M, Merilaita S (2009) Animal camouflage: current issues and new perspectives. Phil Trans R Soc B 364:423–427

    Article  PubMed  Google Scholar 

  • Théry M, Casas J (2002) Predator and prey views of spider camouflage. Nature 415:133

    Article  PubMed  Google Scholar 

  • Vidal MA, Labra A (2008) Herpetología de Chile. Science Verlag, Santiago

    Google Scholar 

  • Weirauch C (2006) Anatomy of disguise: camouflaging structures in nymphs of some Reduviidae (Heteroptera). Am Mus Novit 3542:1–18

    Article  Google Scholar 

  • Weihua MA, Lizhen C, Wang M, Xianchun L (2008) Trade-offs between melanisation and life-history traits in Helicoverpa armigera. Ecol Entomol 33:37–44

    Google Scholar 

  • Wickstein MK (1980) Decorator crabs. Sci Am 242:146–154

    Article  Google Scholar 

  • Windig JJ (1999) Trade-offs between melanization, development time and adult size in Ianchis io and Araschnia levana (Lepidoptera: Nymphalidae)? Heredity 82:57–68

    Article  Google Scholar 

  • Zeledón R, Zúñiga A, Swartzwelder JC (1969) The camouflage of Triatoma dimidiata and the epidemiology of Chagas’ Disease in Costa Rica. Bol Chil Parasitol 24:106–108

    PubMed  Google Scholar 

  • Zeledón R, Valerio CE, Valerio JE (1973) The camouflage phenomenon in several species of triatominae (Hemiptera: Reduviidae). J Med Entomol 10:209–211

    PubMed  Google Scholar 

Download references

Acknowledgments

We thank Carmen Gloria Ossa for laboratory assistance, and Dr. Rodrigo Zeledón and Dr. Dunston Ambrose for sharing some of their articles difficult to find. Financial support was obtained from FONDECYT 11090086.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carezza Botto-Mahan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramírez, P.A., González, A. & Botto-Mahan, C. Masking Behavior by Mepraia spinolai (Hemiptera: Reduviidae): Anti-predator Defense and Life History Trade-offs. J Insect Behav 26, 592–602 (2013). https://doi.org/10.1007/s10905-012-9371-3

Download citation

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10905-012-9371-3

Keywords

Navigation