Skip to main content
Log in

Flexible Use of Patch-Leaving Mechanisms in a Parasitoid Wasp

  • Published:
Journal of Insect Behavior Aims and scope Submit manuscript

Classical optimal-foraging theory predicts that a parasitoid is less likely to leave a patch after a host encounter when the host distribution is aggregated, whereas a parasitoid is more likely to leave after a host encounter when the host distribution is regular. Field data on host distributions in the area of origin of the whitefly parasitoid Encarsia formosa showed that whiteflies aggregate at several spatial scales. However, infested leaves most likely contained a single host. This suggests that a host encounter is not enough to decide when to leave. We therefore tested the effect of host distribution and parasitoid experience on patch-leaving behavior. Each parasitoid was observed for several consecutive days in a three-dimensional arena with leaflets containing on average one host per leaflet in an either regular or aggregated host distribution. A proportional hazards model showed that a host encounter decreased the leaving tendency on a leaflet with one host when the time since the latest host encounter was short, but increased the leaving tendency when the time since the latest host encounter was long, independent of host distribution. We conclude that a parasitoid can switch from decreasing to increasing its tendency to leave a patch after a host encounter. We propose two hypotheses that may explain the evolution of such a switching mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  • Bernstein, C., and Driessen, G. (1996). Patch-marking and optimal search patterns in the parasitoid Venturia canescens. J. Anim. Ecol. 65: 211–219.

    Article  Google Scholar 

  • Birkett, M. A., Chamberlain, K., Guerrieri, E., Pickett, J. A., Wadhams, L. J., and Yasuda, T. (2003). Volatiles from whitefly-infested plants elicit a host-locating response in the parasitoid, Encarsia formosa. J. Chem. Ecol. 29: 1589–1600.

    Article  PubMed  CAS  Google Scholar 

  • Burger, J. M. S., Gort, G., van Lenteren, J. C., and Vet, L. E. M. (2004). Natural history of whitefly in Costa Rica: An evolutionary starting point. Ecol. Entomol. 29: 150–163.

    Article  Google Scholar 

  • Charnov, E. L. (1976). Optimal foraging, marginal value theorem. Theor. Pop. Biol. 9: 129–136.

    Article  CAS  Google Scholar 

  • Clark, C. W., and Mangel, M. (2000). Dynamic State Variable Models in Ecology, Oxford University Press, Oxford.

    Google Scholar 

  • Corbet, S. A. (1971). Mandibular gland secretion of larvae of flour moth, Anagasta kuehniella, contains an epideictic pheromone and elicits oviposition movements in a hymenopteran parasite. Nature 232: 481–484.

    Article  PubMed  CAS  Google Scholar 

  • Cox, D. R. (1972). Regression models and life tables. J. R. Statist. Soc. B 34: 187–220.

    Google Scholar 

  • Driessen, G., and Bernstein, C. (1999). Patch departure mechanisms and optimal host exploitation in an insect parasitoid. J. Anim. Ecol. 68: 445–459.

    Article  Google Scholar 

  • Driessen, G., Bernstein, C., van Alphen, J. J. M., and Kacelnik, A. (1995). A count-down mechanism for host search in the parasitoid Venturia canescens. J. Anim. Ecol. 64: 117–125.

    Article  Google Scholar 

  • Eggenkamp-Rotteveel Mansveld, M. H., van Lenteren, J. C., Ellenbroek, J. M., and Woets, J. (1982). The parasite-host relationship between Encarsia formosa (Hym., Aphelinidae) and Trialeurodes vaporariorum (Hom., Aleyrodidae). XII. Population dynamics of parasite and host in a large, commercial glasshouse and test of the parasite-introduction method used in the Netherlands. Z. angew. Entomol. 93: 113–130 (first part); 258–279 (second part).

    Google Scholar 

  • Godfray, H. C. J. (1994). Parasitoids: Behavioral and Evolutionary Ecology, Princeton University Press, Princeton.

    Google Scholar 

  • Haccou, P., and Hemerik, L. (1985). The influence of larval dispersal in the cinnabar moth (Tyria jacobaeae) on predation by the red wood ant (Formica polyctena): An analysis based on the proportional hazards model. J. Anim. Ecol. 54: 755–770.

    Article  Google Scholar 

  • Hemerik, L., Driessen, G., and Haccou, P. (1993). Effects of intra-patch experiences on patch time, search time and searching efficiency of the parasitoid Leptopilina clavipes. J. Anim. Ecol. 62: 33–44.

    Article  Google Scholar 

  • Houston, A. I., and McNamara, J. M. (1999). Models of Adaptive Behaviour, Cambridge University Press, Cambridge.

    Google Scholar 

  • Iwasa, Y., Higashi, M., and Yamamura, N. (1981). Prey distribution as a factor determining the choice of optimal foraging strategy. Am. Nat. 117: 710–723.

    Article  Google Scholar 

  • Jervis, M. A., Heimpel, G. E., Ferns, P. N., Harvey, J. A., and Kidd, N. A. C. (2001). Life-history strategies in parasitoid wasps: A comparative analysis of ‘ovigeny’. J. Anim. Ecol. 70: 442–458.

    Article  Google Scholar 

  • Kaiser, L., Perez-Maluf, R., Sandoz, J. C., Pham-Delegue, M. H. (2003). Dynamics of odour learning in Leptopilina boulardi, a hymenopterous parasitoid. Anim. Behav. 66: 1077–1084.

    Article  Google Scholar 

  • Kalbfleisch, J. D., and Prentice, R. L. (1980). The Statistical Analysis of Failure Time Data, Wiley, New York.

    Google Scholar 

  • van Lenteren, J. C. (2000). A greenhouse without pesticides: Fact or fantasy? Crop Protection 19: 375–384.

    Article  Google Scholar 

  • van Lenteren, J. C., Nell, H. W., Sevenster-van der Lelie, L. A., and Woets, J. (1976). The parasite-host relationship between Encarsia formosa (Hymenoptera: Aphelinidae) and Trialeurodes vaporariorum (Homoptera: Aleyrodidae). I. Host finding by the parasite. Entomol. Exp. Appl. 20: 123–130.

    Google Scholar 

  • van Lenteren, J. C., van Roermund, H. J. W., and Sütterlin, S. (1996). Biological control of greenhouse whitefly (Trialeurodes vaporariorum) with the parasitoid Encarsia formosa: How does it work? Biol. Control 6: 1–10.

    Article  Google Scholar 

  • Menzel, R., and Muller, U. (1996). Learning and memory in honeybees: From behavior to neural substrates. Annu. Rev. Neurosci. 19: 379–404.

    Article  PubMed  CAS  Google Scholar 

  • Nell, H. W., Sevenster-van der Lelie, L. A., Woets, J., and van Lenteren, J. C. (1976). The parasite-host relationship between Encarsia formosa (Hymenoptera: Aphelinidae) and Trialeurodes vaporariorum (Homoptera: Aleyrodidae). II. Selection of host stages for oviposition and feeding by the parasite. Z. angew. Entomol. 81: 372–376.

    Google Scholar 

  • Neter, J., Kutner, M. H., Nachtsheim, C. J., and Wasserman, W. (1996). Applied Linear Statistical Models, 4th ed., WCB/McGraw-Hill, Boston.

    Google Scholar 

  • Noldus, L. P. J. J., and van Lenteren, J. C. (1990). Host aggregation and parasitoid behaviour: Biological control in a closed system. In Mackauer, M., Ehler, L. E., and Roland, J. (Eds.), Critical Issues in Biological Control, Intercept, Andover, pp. 229–262.

    Google Scholar 

  • Outreman, Y., Le Ralec, A., Wajnberg, E., and Pierre, J. S. (2001). Can imperfect host discrimination explain partial patch exploitation in parasitoids? Ecol. Entomol. 26: 271–280.

    Article  Google Scholar 

  • Outreman, Y., Le Ralec, A., Wajnberg, E., and Pierre, J. S. (2005). Effects of within- and among-patch experiences on the patch-leaving decision rules in an insect parasitoid. Behav. Ecol. Sociobiol. 58: 208–217.

    Article  Google Scholar 

  • Papaj, D. R., and Lewis, A. C. (1993). Insect Learning: Ecological and Evolutionary Perspectives, Chapman and Hall, London.

    Google Scholar 

  • Rodriguez-Saona, C., Crafts-Brandner, S. J., and Canas, L. A. (2003). Volatile emissions triggered by multiple herbivore damage: Beet armyworm and whitefly feeding on cotton plants. J. Chem. Ecol. 29: 2539–2550.

    Article  PubMed  CAS  Google Scholar 

  • Roitberg, B. D., Mangel, M., Lalonde, R. G., Roitberg, C. A., van Alphen, J. J. M., and Vet, L. (1992). Seasonal dynamic shifts in patch exploitation by parasitic wasps. Behav. Ecol. 3: 156–165.

    Article  Google Scholar 

  • Romeis, J., and Zebitz, C. P. W. (1997). Searching behaviour of Encarsia formosa as mediated by colour and honeydew. Entomol. Exp. Appl. 82: 299–309.

    Article  Google Scholar 

  • Steidle, J. L. M., and van Loon, J. J. A. (2003). Dietary specialization and infochemical use in carnivorous arthropods: testing a concept. Entomol. Exp. Appl. 108: 133–148.

    Article  Google Scholar 

  • Stephens, D. W., and Krebs, J. R. (1986). Foraging Theory, Princeton University Press, Princeton.

    Google Scholar 

  • Sütterlin, S., and van Lenteren, J. C. (2000). Pre- and post-landing response of the parasitoid Encarsia formosa to whitefly hosts on Gerbera jamesonii. Entomol. Exp. Appl. 96: 299–307.

    Article  Google Scholar 

  • Takasu, K., and Lewis, W. J. (1996). The role of learning in adult food location by the larval parasitoid, Microplitis croceipes (Hymenoptera: Braconidae). J. Insect Behav. 9: 265–281.

    Article  Google Scholar 

  • Tenhumberg, B., Keller, M. A., Tyre, A. J., and Possingham, H. P. (2001). The effect of resource aggregation at different scales: optimal foraging behavior of Cotesia rubecula. Am. Nat. 158: 505–518.

    Article  PubMed  CAS  Google Scholar 

  • Turlings, T. C. J., Bernasconi, M., Bertossa, R., Bigler, F., Caloz, G., and Dorn, S. (1998). The induction of volatile emissions in maize by three herbivore species with different feeding habits: Possible consequences for their natural enemies. Biol. Control 11: 122–129.

    Article  Google Scholar 

  • van Alphen, J. J. M., Bernstein, C., and Driessen, G. (2003). Information acquisition and time allocation in insect parasitoids. TREE 18: 81–87.

    Google Scholar 

  • van Roermund, H. J. W., and van Lenteren, J. C. (1992). The parasite-host relationship between Encarsia formosa (Hymenoptera: Aphelinidae) and Trialeurodes vaporariorum (Homoptera: Aleyrodidae). XXXV. Life-history parameters of the greenhouse whitefly parasitoid Encarsia formosa as a function of host stage and temperature. Wageningen Agric. Univ. Papers 92.3: 103–147.

    Google Scholar 

  • van Roermund, H. J. W., and van Lenteren, J. C. (1995). Residence times of the whitefly parasitoid Encarsia formosa on tomato leaflets. J. Appl. Entomol. 119: 465–471.

    Article  Google Scholar 

  • van Roermund, H. J. W., Hemerik, L., and van Lenteren, J. C. (1994). Influence of intra-patch experiences and temperature on the time allocation of the whitefly parasitoid Encarsia formosa. J. Insect Behav. 7: 483–501.

    Article  Google Scholar 

  • Vet, L. E. M., and Dicke, M. (1992). Ecology of infochemical use by natural enemies in a tritrophic context. Annu. Rev. Entomol. 37: 141–172.

    Article  Google Scholar 

  • Vet, L. E. M., Lewis, W. J., and Cardé, R.T. (1995). Parasitoid foraging and learning. In Bell, W., and Cardé, R. T. (Eds.), Chemical Ecology in Insects, 2nd ed., Chapman and Hall, London, pp. 65–101.

    Google Scholar 

  • Vet, L. E. M. (1999). From chemical to population ecology: Infochemical use in an evolutionary context. J. Chem. Ecol. 25: 31–49.

    Article  CAS  Google Scholar 

  • Visser, M. E., van Alphen, J. J. M., and Hemerik, L. (1992). Adaptive superparasitism and patch time allocation in solitary parasitoids—an ESS model. J. Anim. Ecol. 61: 93–101.

    Article  Google Scholar 

  • Vos, M., Hemerik, L., and Vet, L. E. M. (1998). Patch exploitation by the parasitoids Cotesia rubecula and Cotesia glomerata in multi-patch environments with different host distributions. J. Anim. Ecol. 67: 774–783.

    Article  Google Scholar 

  • Waage, J. K. (1979). Foraging for patchily-distributed hosts by the parasitoid, Nemeritis canescens. J. Anim. Ecol. 48: 353–371.

    Article  Google Scholar 

  • Wajnberg, E., Curty, C., and Colazza, S. (2004). Genetic variation in the mechanisms of direct mutual interference in a parasitic wasp: Consequences in terms of patch-time allocation. J. Anim. Ecol. 73: 1179–1189.

    Article  Google Scholar 

  • Wajnberg, E., Gonsard, P. A., Tabone, E., Curty, C., Lezcano, N., and Colazza, S. (2003). A comparative analysis of patch-leaving decision rules in a parasitoid family. J. Anim. Ecol. 72: 618–626.

    Article  Google Scholar 

  • Wajnberg, E., Rosi, M. C., and Colazza, S. (1999). Genetic variation in patch time allocation in a parasitic wasp. J. Anim. Ecol. 68: 121–133.

    Article  Google Scholar 

  • Wang, X. G., and Keller, M. A. (2003). Patch time allocation by the parasitoid Diadegma semiclausum (Hymenoptera: Ichneumonidae). I. Effect of interpatch distance. J. Insect Behav. 16: 279–293.

    Article  Google Scholar 

  • Yin, J. C. P., Wallach, J. S., Del Vecchio, M., Wilder, E. L., Zhou, H., Quinn, W. G., and Tully, T. (1994). Induction of a dominant negative CREB transgene specifically blocks long-term memory in Drosophila. Cell 79: 49–58.

    Article  PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We would like to thank Mohammad Javad Ardeh and Yu Tong Qiu for standing in during some observations, and Leo Koopman, Frans van Aggelen and Andre Gidding for rearing the whitefly.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joep M. S. Burger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burger, J.M.S., Huang, Y., Hemerik, L. et al. Flexible Use of Patch-Leaving Mechanisms in a Parasitoid Wasp. J Insect Behav 19, 155–170 (2006). https://doi.org/10.1007/s10905-006-9014-7

Download citation

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10905-006-9014-7

KEY WORDS:

Navigation