Skip to main content
Log in

Photo-Activated Ga-ZnO Gas Sensor for NO2 Detection at Near Ambient Temperature

  • Research
  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Doping is a good way for improving ZnO nanoparticles’ structural, optical, electrical, and sensing characteristics. In this context, undoped and ZnO: Ga nanopowders have been synthesized by sol-gel method. After annealing for 2 h at 400 °C, X-ray diffraction, photoluminescence and transmission electron microscopy analysis were carried out for analyzing the synthesized nanoparticle samples. Pure ZnO sample is composed of small particles with regular shapes, while agglomerates of smaller particles are observed in Ga-doped ZnO. XRD demonstrates that Ga ions addition results in no change in ZnO structure. A reduction in band gap value from 3.31 to 3.23 eV after gallium doping due to a decrease of electron density and a drop in conduction band was registered, representing a key factor that participates in gas sensing properties amelioration. Sensing tests towards NO2 gas are performed using a homemade instrument in a Teflon test chamber equipped by an LED UV lamp. The Ga dopant and UV light affect the sensing properties by creating more sites for the interaction between gas molecules and the sensing material surface. With rapid response as well as recovery times and high NO2 selectivity and high stability and repeatability, Ga-doped ZnO sensor could be an excellent candidate compared to other materials to detect NO2 gas at low concentrations and at near ambient temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Sata Availability

The data used to support the findings of this study are available from the corresponding author upon request.

References

  1. L. Li, S. He, M. Liu, M. Zhang, W. Chen, Anal. Chem. 87, 1638–1645 (2015)

    Article  CAS  PubMed  Google Scholar 

  2. S. Jaballah, H. Dahman, G. Neri, L. El Mir, J. Inorg. Organomet. Polym. 31, 1653–1667 (2021)

    Article  CAS  Google Scholar 

  3. A. Tiwari, M. Prabaharan, R.R. Pandey, S. Li, J. Inorg. Organomet. Polym. 20, 380–386 (2010)

    Article  CAS  Google Scholar 

  4. R.K. Sonker, B.C. Yadav, G.I. Dzhardimalieva, J. Inorg. Organomet. Polym. 26, 1428–1433 (2016)

    Article  CAS  Google Scholar 

  5. S. Aarya, Y. Kumar, R.K. Chahota, J. Inorg. Organomet. Polym. 30, 269–290 (2020)

    Article  CAS  Google Scholar 

  6. K.M. Elsabawy, A.M. Fallatah, J. Inorg. Organomet. Polym. 28, 2865–2870 (2018)

    Article  CAS  Google Scholar 

  7. T. Xie, N. Sullivan, K. Steffens, B. Wen, G. Liu, R. Debnath, A. Davydov, R. Gomez, A. Motayed, J. Alloys Compd. 653, 255–259 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Q. Zhang, G. Xie, M. Xu, Y. Su, H. Tai, H. Du, Y. Jiang, Sens. Actuators B: Chem. 259, 269–281 (2018)

    Article  CAS  Google Scholar 

  9. S. Wang, H.L. Tai, B.H. Liu, Z.H. Duan, Z. Yuan, H. Pan, Y.J. Su, G.Z. Xie, X.S. Du, Y.D. Jiang, Nano Energy. 58, 312–321 (2019)

    Article  CAS  Google Scholar 

  10. B.U. Wojcik, T.A. Vincent, M.F. Chowdhury, J.W. Gardner, Sens. Actuator B: Chem. 181, 735–742 (2013)

    Article  Google Scholar 

  11. P. Sun, W. Wang, Y. Liu, Y. Sun, J. Ma, G. Lu, Sens. Actuators B: Chem. 173, 52–57 (2012)

    Article  CAS  Google Scholar 

  12. M. Hjiri, L. El Mir, S.G. Leonardi, A. Pistone, L. Mavilia, G. Neri, Sens. Actuators B 196, 413–420 (2014)

    Article  CAS  Google Scholar 

  13. R. Dhahri, M. Hjiri, L. El Mir, E. Fazio, F. Neri, F. Barreca, N. Donato, A. Bonavita, G.S. Leonardi, G. Neri, J. Phys. D: Appl. Phys. 48, 255503–255509 (2015)

    Article  Google Scholar 

  14. S. Kanaparthi, S.G. Singh, Mater. Sci. Energy Technol. 3, 91–96 (2020)

    CAS  Google Scholar 

  15. M. Hjiri, L. El Mir, S.G. Leonardi, N. Donato, G. Neri, Nanomaterials, 3 (2013) 357–369

  16. J. Xuan, G. Zhao, M. Sun, F. Jia, X. Wang, T. Zhou, G. Yin, B. Liu, RSC Adv. 10, 39786–39807 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. N. Sun, Q. Tian, W. Bian, X. Wang, H. Dou, C. Li, Y. Zhang, C. Gong, X. You, X. Du, P. Yin, X. Zhao, Y. Yang, X. Liu, Q. Jing, B. Liu, Appl. Surf. Sci. 614, 156213 (2023)

    Article  CAS  Google Scholar 

  18. A. Dey, S. Roy, S. Kumar Sarkar, J. Mater. Eng. Perform. 27, 2701–2707 (2018)

    Article  CAS  Google Scholar 

  19. A. Dey, S. Kumar Sarkar, IEEE Sens. J. 20, 12602–12609 (2020)

    Article  CAS  Google Scholar 

  20. Z. Ling, C. Leach, R. Freer, J. Eur. Ceram. Soc. 21, 1977–1980 (2001)

    Article  CAS  Google Scholar 

  21. G. Heiland, D. Kohl, Chem. Sens. Tech. 1, 15–38 (1988)

    Article  CAS  Google Scholar 

  22. H. Nanto, T. Minami, S. Takata, J. Appl. Phys. 60, 482 (1986)

    Article  CAS  Google Scholar 

  23. C. Klingshirn, Phys. Status Solidi. B71, 547 (1975)

    Article  Google Scholar 

  24. X. Chen, X. Jing, J. Wang, J. Liu, D. Song, L. Liu, Superlattices Microstruct. 63, 204–214 (2013)

    Article  CAS  Google Scholar 

  25. L.C.-K. Liau, J.-S. Huang, J. Alloys Compd. 702, 153–160 (2017)

    Article  CAS  Google Scholar 

  26. A. Qurashi, M. Faiz, N. Tabet, M.W. Alam, Superlattices Microstruct. 50, 173–180 (2011)

    Article  CAS  Google Scholar 

  27. S. Jaballah, M. Hjiri, N. Zahmouli, H.B. Albargi, R. Dhahri, H. Dahman, L. El Mir, G. Neri, J. Mater. Sci: Mater. Electron. 34, 137 (2023)

    CAS  Google Scholar 

  28. D. Das, P. Mondal, RSC Adv. 6, 6144–6153 (2016)

    Article  CAS  Google Scholar 

  29. J. Brunet, M. Dubois, A. Pauly, L. Spinelle, A. Ndiaye, K. Guérin, D.C. Varenne, B. Lauron, Sens. Actuators B 173, 659–667 (2012)

    Article  CAS  Google Scholar 

  30. P. Patnaik, 2007: John Wiley & Sons, Inc. 1060

  31. D. Nath, F. Singh, R. Das, Mater. Chem. Phys. 239, 122021 (2020)

    Article  CAS  Google Scholar 

  32. G. Neri, A. Bonavita, G. Rizzo, S. Galvagno, N. Pinna, M. Niederberger, S. Capone, P. Siciliano, Sens. Actuators B 122, 564–571 (2007)

    Article  CAS  Google Scholar 

  33. M. Karmaoui, S.G. Leonardi, D.M. Tobaldi, N. Donato, R.C. Pullar, M.P. Seabra, J.A. Labrincha, G. Neri, J. Mater. Chem. B 3, 399–407 (2015)

    Article  CAS  PubMed  Google Scholar 

  34. R. Dhahri, M. Hjiri, L. El, A. Mir, D. Bonavita, S.G. Iannazzo, G. Leonardi, Neri, Appl. Surf. Sci. 355, 1321–1326 (2015)

    Article  CAS  Google Scholar 

  35. M. Hjiri, F. Bahanan, M.S. Aida, L. El Mir, G. Neri, J. Inorg. Organomet. Polym Mater. 30, 4063–4071 (2020)

    Article  CAS  Google Scholar 

  36. Y. Chen, D.M. Bagnall, H.K. Koh, K.T. Park, K. Hiraga, Z.Q. Zhu, T. Yao, J. Appl. Phys. 84, 3912 (1998)

    Article  CAS  Google Scholar 

  37. S. Alamdari, M. Sasani Ghamsari, M. Jafar, Tafreshi, Ceram. Int. 46, 4484–4492 (2020)

    Article  CAS  Google Scholar 

  38. D. Sapna, S. Ponja, I.P. Sathasivam, Parkin, Claire J. Carmalt Scientific Reports. 10, 638 (2020)

    Google Scholar 

  39. K. Ellmer, A. Bikowski, J. Phys. D Appl. Phys. 49, 413002 (2016)

    Article  Google Scholar 

  40. F.J. Serrao, S.M. Dharmaprakash, J. Optoelec Adv. Mater. 18, 672–678 (2016)

    CAS  Google Scholar 

  41. N. Han, P. Hu, A. Zuo, D. Zhang, Y. Tian, Y. Chen, Sens. Actuators B: Chem. 145, 114–119 (2010)

    Article  CAS  Google Scholar 

  42. C. Chandrinou, N. Boukos, C. Stogios, A. Travlos, Microelectron. J. 40, 296–298 (2009)

    Article  CAS  Google Scholar 

  43. S. Vempati, J. Mitra, P. Dawson, Nanoscale Res. Lett. 7, 470 (2012)

    Article  PubMed  PubMed Central  Google Scholar 

  44. L. Gao, Q. Li, Z. Song, Wang, Sens. Actuators B 71, 179–183 (2000)

    Article  CAS  Google Scholar 

  45. M. Francis, Academies Des. Sciences. 4, 899 (2001)

    Google Scholar 

  46. J.L. Hou, T.J. Hsueh, ACS Appl. Electron. Mater. 3, 4817–4823 (2021)

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported and funded by the Deanship of Scientific Research at Imam Mohammad Ibn Saud Islamic University (IMSIU) (grant number IMSIU-RP23005).

Author information

Authors and Affiliations

Authors

Contributions

M. Hjiri: Data curation, Conceptualization, Formal analysis, Writing and Editing.G. Neri: Reviewing; Supervision.

Corresponding author

Correspondence to M. Hjiri.

Ethics declarations

Compliance with Ethical standard

All authors declare that the presented work was original research that has not been published previously, and not under consideration for publication elsewhere, in whole or in part.

Competing interests

The authors declare no competing interests. Readers will benefit from transparency, including knowing authors’ and contributors’ affiliations and interests. Sources of funding for research were disclosed.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hjiri, M., Neri, G. Photo-Activated Ga-ZnO Gas Sensor for NO2 Detection at Near Ambient Temperature. J Inorg Organomet Polym (2023). https://doi.org/10.1007/s10904-023-02934-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10904-023-02934-z

Keywords

Navigation