Skip to main content
Log in

Effect of Al and Mg Co-doping on the Microstructural and Gas-Sensing Characteristics of ZnO Nanoparticles

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Al and Mg co-doped ZnO nanoparticles were synthesized via the sol-gel technique to detect carbon oxides. The impact of Al and Mg on the structural, morphological and optical properties was discussed. XRD patterns revealed that Al and Mg ions successfully incorporate within the hexagonal crystalline structure of ZnO. The crystallites sizes of the samples heated at 400 °C ranges between 23 and 27 nm. TEM characterizations showed prismatic-like shape crystallites. Optical characterizations were carried out by UV-VIS-NIR spectroscopy and photoluminescence, showing high absorbance in the UV region and a slight decrease in energy band-gap compared to undoped ZnO. The PL spectra of all samples illustrated two major emissions including a broad visible band and a narrow ultraviolet (UV) band. Finally, it was confirmed that Al-Mg co-doping ZnO films promote carbon oxides sensing properties in terms of higher response, low detection limit and lower response/recovery time in comparison with undoped ZnO film.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. A. Narjis, H. El Aakib, M. Boukendil, M. El Hasnaoui, L. Nkhaili, A. Aberkouks, A. Outzourhit, Controlling the structural properties of pure and aluminum doped zinc oxide nanoparticles by annealing. J. King Saudi Univ. Sci. 32, 1074–1080 (2020)

    Google Scholar 

  2. A. Mahmoud, M. Echabaane, K. Omri, L. El Mir, R.B. Chaabane, Development of an impedimetric non enzymatic sensor based on ZnO and Cu doped ZnO nanoparticles for the detection of glucose. J. Alloys Compd. 786, 960–968 (2019)

    CAS  Google Scholar 

  3. I. Ghiloufi, J. El Ghoul, A.-E. Modwi, I. AlShunaifi, L. El Mir, Removal of Lead (II) ion from aqueous solution using Ga-doped ZnO and Ca-doped ZnO Nanopowder. Zeitschrift für Naturforschung A 74, 573–580 (2019)

    CAS  Google Scholar 

  4. L. El Mir, Luminescence properties of calcium doped zinc oxide nanoparticles. J. Lumin. 186, 98–102 (2017)

    Google Scholar 

  5. J. El Ghoul, C. Barthou, L. El Mir, Synthesis by sol–gel process, structural and optical properties of nanoparticles of zinc oxide doped vanadium. Superlattice. Microst. 51, 942–951 (2012)

    Google Scholar 

  6. A. Sanger, S.B. Kang, M.H. Jeong, C.U. Kim, J.M. Baik, K.J. Choi, All-transparent NO2 gas sensors based on freestanding Al-doped ZnO nanofibers. ACS Appl. Electron. Mater. 1, 1261–1268 (2019)

    CAS  Google Scholar 

  7. J. Wang, Y. Shen, X. Li, Y. Xia, C. Yang, Synergistic effects of UV activation and surface oxygen vacancies on the room-temperature NO2 gas sensing performance of ZnO nanowires. Sensors Actuators B Chem. 298, 126858 (2019)

    CAS  Google Scholar 

  8. P. Cao, Z. Yang, S. Navale, S. Han, X. Liu, W. Liu, Y. Lu, F. Stadler, D. Zhu, Ethanol sensing behavior of Pd-nanoparticles decorated ZnO-nanorod based chemiresistive gas sensors. Sensors Actuators B Chem. 298, 126850 (2019)

    CAS  Google Scholar 

  9. J. Li, H. Liu, H. Fu, L. Xu, H. Jin, X. Zhang, L. Wang, K. Yu, Synthesis of 1D α-MoO3/0D ZnO heterostructure nanobelts with enhanced gas sensing properties. J. Alloys Compd. 788, 248–256 (2019)

    CAS  Google Scholar 

  10. J.-H. Kim, A. Mirzaei, H.W. Kim, P. Wu, S.S. Kim, Design of supersensitive and selective ZnO-nanofiber-based sensors for H2 gas sensing by electron-beam irradiation. Sensors Actuators B Chem. 293, 210–223 (2019)

    CAS  Google Scholar 

  11. S.-K. Kim, S. Park, M.-K. Son, H.-J. Kim, Ammonia treated ZnO nanoflowers based CdS/CdSe quantum dot sensitized solar cell. Electrochim. Acta 151, 531–536 (2015)

    CAS  Google Scholar 

  12. R. Kumar, G. Kumar, A. Umar, ZnO nano-mushrooms for photocatalytic degradation of methyl orange. Mater. Lett. 97, 100–103 (2013)

    CAS  Google Scholar 

  13. V. Pazhanivelu, A.P.B. Selvadurai, Y. Zhao, R. Thiyagarajan, R. Murugaraj, Room temperature ferromagnetism in Mn doped ZnO: Co nanoparticles by co-precipitation method. Phys. B Condens. Matter 481, 91–96 (2016)

    CAS  Google Scholar 

  14. C. Zhang, T. Han, W. Wang, J. Zhang, Dried plum-like ZnO assemblies consisted of ZnO nanoparticles synthesized by ultrasonic spray pyrolysis. Int. J. Mod. Phys. B 34, 2040005 (2019)

    Google Scholar 

  15. S. Rajendrachari, Y. Kamacı, R. Taş, Y. Ceylan, A.S. Bülbül, O. Uzun, A.C. Karaoğlanlı, Antimicrobial investigation of CuO and ZnO nanoparticles prepared by a rapid combustion method. Phys. Chem. Res. 7, 799–812 (2019)

    Google Scholar 

  16. S. Bhatia, N. Verma, R. Bedi, Ethanol gas sensor based upon ZnO nanoparticles prepared by different techniques. Results Phys. 7, 801–806 (2017)

    Google Scholar 

  17. M. El-Desoky, M. Ali, G. Afifi, H. Imam, Characterization and optical properties of annealed ZnO nanoparticles prepared by microwave irradiation. Front. Sci. Res. Technol. 1, 1–7 (2019)

    CAS  Google Scholar 

  18. K. Omri, I. Najeh, R. Dhahri, J. El Ghoul, L. El Mir, Effects of temperature on the optical and electrical properties of ZnO nanoparticles synthesized by sol–gel method. Microelectron. Eng. 128, 53–58 (2014)

    CAS  Google Scholar 

  19. B. Abebe, H.A. Murthy, E.A. Zereffa, Y. Adimasu, Synthesis and characterization of ZnO/PVA nanocomposites for antibacterial and electrochemical applications. Inorg. Nano Metal Chem., 1–12 (2020)

  20. J. El Ghoul, K. Omri, L. El Mir, C. Barthou, S. Alaya, Sol-gel synthesis and luminescence properties of SiO2/Zn2SiO4 and SiO2/Zn2SiO4:V composite materials. J. Lumin. 132, 2288–2292 (2012)

    Google Scholar 

  21. A.A. Al-Ghamdi, A. Dere, A. Tataroğlu, B. Arif, F. Yakuphanoglu, F. El-Tantawy, W.A. Farooq, Composite metal oxide semiconductor based photodiodes for solar panel tracking applications. J. Alloys Compd. 650, 692–699 (2015)

    CAS  Google Scholar 

  22. B. Abebe, H.A. Murthy, E. Amare, Enhancing the photocatalytic efficiency of ZnO: Defects, heterojunction, and optimization. Environ. Nanotechnol. Monit. Manag. 14, 100336 (2020)

    Google Scholar 

  23. Z.-Y. Zhao, M.-H. Wang, H.-P. Zhang, Microstructure and varistor properties of V-doped ZnO nanoparticles prepared by co-precipitation method. J. Mater. Sci. Mater. Electron. 27, 1777–1782 (2016)

    CAS  Google Scholar 

  24. E. Nour, A. Khan, O. Nur, M. Willander, A flexible sandwich nanogenerator for harvesting piezoelectric potential from single crystalline zinc oxide nanowires. Nanomater. Nanotechnol. 4, 24 (2014)

    Google Scholar 

  25. B. Abebe, H.A. Murthy, E. Zerefa, Y. Adimasu, PVA assisted ZnO based mesoporous ternary metal oxides nanomaterials: Synthesis, optimization, and evaluation of antibacterial activity. Mater. Res. Express 7, 045011 (2020)

    CAS  Google Scholar 

  26. R. Ahmad, N. Tripathy, M.-S. Ahn, Y.-B. Hahn, Highly stable hydrazine chemical sensor based on vertically-aligned ZnO nanorods grown on electrode. J. Colloid Interface Sci. 494, 153–158 (2017)

    CAS  PubMed  Google Scholar 

  27. G. Neri, First fifty years of chemoresistive gas sensors. Chemosensors 3, 1–20 (2015)

    CAS  Google Scholar 

  28. P.S. Kolhe, A.B. Shinde, S. Kulkarni, N. Maiti, P.M. Koinkar, K.M. Sonawane, Gas sensing performance of Al doped ZnO thin film for H2S detection. J. Alloys Compd. 748, 6–11 (2018)

    CAS  Google Scholar 

  29. N. Vorobyeva, M. Rumyantseva, D. Filatova, E. Konstantinova, D. Grishina, A. Abakumov, S. Turner, A. Gaskov, Nanocrystalline ZnO (Ga): Paramagnetic centers, surface acidity and gas sensor properties. Sensors Actuators B Chem. 182, 555–564 (2013)

    CAS  Google Scholar 

  30. M. Sinha, R. Mahapatra, M.K. Mondal, S. Krishnamurthy, R. Ghosh, Fast response and low temperature sensing of acetone and ethanol using Al-doped ZnO microrods. Physica E 118, 113868 (2020)

    CAS  Google Scholar 

  31. M. Hjiri, R. Dhahri, K. Omri, L. El Mir, S.G. Leonardi, N. Donato, G. Neri, Effect of indium doping on ZnO based-gas sensor for CO. Mater. Sci. Semicond. Process. 27, 319–325 (2014)

    CAS  Google Scholar 

  32. R. Dhahri, M. Hjiri, L.E. Mir, A. Bonavita, D. Iannazzo, S.G. Leonardi, G. Neri, CO sensing properties under UV radiation of Ga-doped ZnO nanopowders. Appl. Surf. Sci. 355, 1321–1326 (2015)

    CAS  Google Scholar 

  33. R. Dhahri, M. Hjiri, L. El Mir, E. Fazio, F. Neri, F. Barreca, N. Donato, A. Bonavita, S. Leonardi, G. Neri, ZnO: Ca nanopowders with enhanced CO2 sensing properties. J. Phys. D. Appl. Phys. 48, 255503 (2015)

    Google Scholar 

  34. A. Mahroug, B. Mari, M. Mollar, I. Boudjadar, L. Guerbous, A. Henni, N. Selmi, Studies on structural, surface morphological, optical, luminescence and Uv photodetection properties of sol–gel Mg-doped ZnO thin films. Surf. Rev. Lett. 26, 1850167 (2019)

    CAS  Google Scholar 

  35. V. Khorramshahi, J. Karamdel, R. Yousefi, Acetic acid sensing of Mg-doped ZnO thin films fabricated by the sol–gel method. J. Mater. Sci. Mater. Electron. 29, 14679–14688 (2018)

    CAS  Google Scholar 

  36. M. GuL, M. Amin, M. Abbas, S.Z. Ilyas, N.A. Shah, Synthesis and characterization of magnesium doped ZnO nanostructures: methane (CH 4) detection. J. Mater. Sci. Mater. Electron. 30, 5257–5265 (2019)

    CAS  Google Scholar 

  37. K. Vijayalakshmi, A. Renitta, Enhanced H 2 sensing performance presented by Mg doped ZnO films fabricated with a novel ITO seed layer. J. Mater. Sci. Mater. Electron. 26, 3458–3465 (2015)

    CAS  Google Scholar 

  38. R. Dhahri, S. Leonardi, M. Hjiri, L. El Mir, A. Bonavita, N. Donato, D. Iannazzo, G. Neri, Enhanced performance of novel calcium/aluminum co-doped zinc oxide for CO2 sensors. Sensors Actuators B Chem. 239, 36–44 (2017)

    CAS  Google Scholar 

  39. M. Hjiri, L. El Mir, S. Leonardi, A. Pistone, L. Mavilia, G. Neri, Al-doped ZnO for highly sensitive CO gas sensors. Sensors Actuators B Chem. 196, 413–420 (2014)

    CAS  Google Scholar 

  40. H. Kinoshita, H. Türkan, S. Vucinic, S. Naqvi, R. Bedair, R. Rezaee, A. Tsatsakis, Carbon monoxide poisoning. Toxicol. Rep. 7, 169–173 (2020)

    CAS  PubMed  PubMed Central  Google Scholar 

  41. E. Sunarsih, S. Suheryanto, R. Mutahar, R. Garmini, Risk Assesment of air pollution exposure (NO2, SO2, Total suspended particulate, and particulate matter 10 micron) and smoking habits on the lung function of bus drivers in Palembang City. Kesmas Nat. Public Health J. 13, 202–206 (2019)

    Google Scholar 

  42. K. Azuma, N. Kagi, U. Yanagi, H. Osawa, Effects of low-level inhalation exposure to carbon dioxide in indoor environments: A short review on human health and psychomotor performance. Environ. Int. 121, 51–56 (2018)

    CAS  PubMed  Google Scholar 

  43. D.A. Purser, J.L. McAllister, Assessment of hazards to occupants from smoke, toxic gases, and heat, in SFPE handbook of fire protection engineering, (Springer, New York/London, 2016), pp. 2308–2428

    Google Scholar 

  44. P. Rodlamul, S. Tamura, N. Imanaka, Effect of p-or n-type semiconductor on CO sensing performance of catalytic combustion-type CO gas sensor with CeO2-ZrO2-ZnO based catalyst. Bull. Chem. Soc. Jpn. 92, 585–591 (2019)

    CAS  Google Scholar 

  45. S. Zhu, Y. Liu, G. Wu, L. Fei, S. Zhang, Y. Hu, Z. Yan, Y. Wang, H. Gu, W. Chen, Mechanism study on extraordinary room-temperature CO sensing capabilities of Pd-SnO2 composite nanoceramics. Sensors Actuators B Chem. 285, 49–55 (2019)

    CAS  Google Scholar 

  46. L. El Mir, Z.B. Ayadi, M. Saadoun, K. Djessas, H.J. von Bardeleben, S. Alaya, Preparation and characterization of n-type conductive (Al, Co) co-doped ZnO thin films deposited by sputtering from aerogel nanopowders. Appl. Surf. Sci. 254, 570–573 (2007)

    Google Scholar 

  47. Y. Chen, D. Bagnall, H.-j. Koh, K.-t. Park, K. Hiraga, Z. Zhu, T. Yao, Plasma assisted molecular beam epitaxy of ZnO on c-plane sapphire: Growth and characterization. J. Appl. Phys. 84, 3912–3918 (1998)

    CAS  Google Scholar 

  48. A. Mallika, A.R. Reddy, K. Sowribabu, K.V. Reddy, Structural and optical characterization of Zn0. 95− xMg0. 05AlxO nanoparticles. Ceram. Int. 41, 9276–9284 (2015)

    CAS  Google Scholar 

  49. A.F. Fathima, R.J. Mani, K. Sakthipandi, K. Manimala, A. Hossain, Enhanced antifungal activity of pure and iron-doped ZnO nanoparticles prepared in the absence of reducing agents. J. Inorg. Organomet. Polym. Mater. 30, 2397–2405 (2020)

    Google Scholar 

  50. U. Kumar, S. Upadhyay, Structural, microstructure, optical, and dielectric properties of Sr 1.99 M 0.01 SnO 4 (M: La, Nd, Eu) Ruddlesden–Popper oxide. J. Mater. Sci. Mater. Electron., 1–10 (2020)

  51. A. Kaushik, B. Dalela, R. Rathore, V. Vats, B. Choudhary, P. Alvi, S. Kumar, S. Dalela, Influence of Co doping on the structural, optical and magnetic properties of ZnO nanocrystals. J. Alloys Compd. 578, 328–335 (2013)

    CAS  Google Scholar 

  52. B. Han, X. Liu, X. Xing, N. Chen, X. Xiao, S. Liu, Y. Wang, A high response butanol gas sensor based on ZnO hollow spheres. Sensors Actuators B Chem. 237, 423–430 (2016)

    CAS  Google Scholar 

  53. V. Mote, Y. Purushotham, B. Dole, Williamson-Hall analysis in estimation of lattice strain in nanometer-sized ZnO particles. J. Theor. Appl. Phys. 6, 6 (2012)

    Google Scholar 

  54. J.-M. Myoung, W.-H. Yoon, D.-H. Lee, I. Yun, S.-H. Bae, S.-Y. Lee, Effects of thickness variation on properties of ZnO thin films grown by pulsed laser deposition. Jpn. J. Appl. Phys. 41, 28 (2002)

    CAS  Google Scholar 

  55. N. Khatun, E. Rini, P. Shirage, P. Rajput, S. Jha, S. Sen, Effect of lattice distortion on bandgap decrement due to vanadium substitution in TiO2 nanoparticles. Mater. Sci. Semicond. Process. 50, 7–13 (2016)

    CAS  Google Scholar 

  56. A. Hafdallah, F. Yanineb, M. Aida, N. Attaf, In doped ZnO thin films. J. Alloys Compd. 509, 7267–7270 (2011)

    CAS  Google Scholar 

  57. R. Sagheer, M. Khalil, V. Abbas, Z.N. Kayani, U. Tariq, F. Ashraf, Effect of Mg doping on structural, morphological, optical and thermal properties of ZnO nanoparticles. Optik 200, 163428 (2020)

    CAS  Google Scholar 

  58. J. de Lara Andrade, A.G. Oliveira, V.V.G. Mariucci, A.C. Bento, M.V. Companhoni, C.V. Nakamura, S.M. Lima, L.H. da Cunha Andrade, J.C.G. Moraes, A.A.W. Hechenleitner, Effects of Al3+ concentration on the optical, structural, photocatalytic and cytotoxic properties of Al-doped ZnO. J. Alloys Compd. 729, 978–987 (2017)

    Google Scholar 

  59. P. Norouzzadeh, K. Mabhouti, M. Golzan, R. Naderali, Investigation of structural, morphological and optical characteristics of Mn substituted Al-doped ZnO NPs: a Urbach energy and Kramers-Kronig study. Optik 204, 164227 (2020)

    CAS  Google Scholar 

  60. H.J. Lee, J.H. Kim, S.S. Park, S.S. Hong, G.D. Lee, Degradation kinetics for photocatalytic reaction of methyl orange over Al-doped ZnO nanoparticles. J. Ind. Eng. Chem. 25, 199–206 (2015)

    CAS  Google Scholar 

  61. G.H. Mhlongo, K. Shingange, Z.P. Tshabalala, B.P. Dhonge, F.A. Mahmoud, B.W. Mwakikunga, D.E. Motaung, Room temperature ferromagnetism and gas sensing in ZnO nanostructures: Influence of intrinsic defects and Mn, Co, Cu doping. Appl. Surf. Sci. 390, 804–815 (2016)

    CAS  Google Scholar 

  62. P.K. Samanta, A.K. Bandyopadhyay, Chemical growth of hexagonal zinc oxide nanorods and their optical properties. Appl. Nanosci. 2, 111–117 (2012)

    CAS  Google Scholar 

  63. H. Chen, J. Ding, S. Ma, Structural and optical properties of ZnO: Mg thin films grown under different oxygen partial pressures. Physica E 42, 1487–1491 (2010)

    CAS  Google Scholar 

  64. S. Agarwal, P. Rai, E.N. Gatell, E. Llobet, F. Güell, M. Kumar, K. Awasthi, Gas sensing properties of ZnO nanostructures (flowers/rods) synthesized by hydrothermal method. Sensors Actuators B Chem. 292, 24–31 (2019)

    CAS  Google Scholar 

  65. J. Hu, Y. Sun, Y. Xue, M. Zhang, P. Li, K. Lian, S. Zhuiykov, W. Zhang, Y. Chen, Highly sensitive and ultra-fast gas sensor based on CeO2-loaded In2O3 hollow spheres for ppb-level hydrogen detection. Sensors Actuators B Chem. 257, 124–135 (2018)

    CAS  Google Scholar 

  66. M. Kumar, B. Singh, P. Yadav, V. Bhatt, M. Kumar, K. Singh, A. Abhyankar, A. Kumar, J.-H. Yun, Effect of structural defects, surface roughness on sensing properties of Al doped ZnO thin films deposited by chemical spray pyrolysis technique. Ceram. Int. 43, 3562–3568 (2017)

    CAS  Google Scholar 

  67. M. Amin, N.A. Shah, A.S. Bhatti, M.A. Malik, Effects of Mg doping on optical and CO gas sensing properties of sensitive ZnO nanobelts. CrystEngComm 16, 6080–6088 (2014)

    CAS  Google Scholar 

  68. N. Han, X. Wu, L. Chai, H. Liu, Y. Chen, Counterintuitive sensing mechanism of ZnO nanoparticle based gas sensors. Sensors Actuators B Chem. 150, 230–238 (2010)

    CAS  Google Scholar 

  69. R. Mohamed, M. Mamat, A. Ismail, M. Malek, A. Zoolfakar, Z. Khusaimi, A. Suriani, A. Mohamed, M. Ahmad, M. Rusop, Hierarchically assembled tin-doped zinc oxide nanorods using low-temperature immersion route for low temperature ethanol sensing. J. Mater. Sci. Mater. Electron. 28, 16292–16305 (2017)

    CAS  Google Scholar 

  70. B. Mandal, S. Maiti, Aaryashree, G. Siddharth, M. Das, A. Agarwal, A.K. Das, S. Mukherjee, Organo-di-benzoic-acidified ZnO Nanohybrids for highly selective detection of CO at low temperature. J. Phys. Chem. C 124, 7307–7316 (2020)

    CAS  Google Scholar 

  71. A.J. Bandari, S. Nasirian, Carbon monoxide gas sensing features of zinc oxide nanoneedles: practical selectivity and long-term stability. J. Mater. Sci. Mater. Electron. 30, 10073–10081 (2019)

    Google Scholar 

  72. C. Prajapati, D. Visser, S. Anand, N. Bhat, Honeycomb type ZnO nanostructures for sensitive and selective CO detection. Sensors Actuators B Chem. 252, 764–772 (2017)

    CAS  Google Scholar 

  73. F. Fitriana, N.L.W. Septiani, I. Irzaman, F. Ferdiansjah, M.Z. Fahmi, D.R. Adhika, S. Suyatman, N. Nugraha, B. Yuliarto, Preparation of (002)-oriented ZnO for CO gas sensor. Mater. Res. Express 6, 064003 (2019)

    CAS  Google Scholar 

  74. L. Martínez, J. Holguín-Momaca, T. Karthik, S. Olive-Méndez, J. Campos-Alvarez, V. Agarwal, Sputtering temperature dependent growth kinetics and CO2 sensing properties of ZnO deposited over porous silicon. Superlattice. Microst. 98, 8–17 (2016)

    Google Scholar 

  75. Y. Hunge, A. Yadav, S. Kulkarni, V. Mathe, A multifunctional ZnO thin film based devices for photoelectrocatalytic degradation of terephthalic acid and CO2 gas sensing applications. Sensors Actuators B Chem. 274, 1–9 (2018)

    CAS  Google Scholar 

  76. H. Çolak, E. Karaköse, Synthesis and characterization of different dopant (Ge, Nd, W)-doped ZnO nanorods and their CO2 gas sensing applications. Sensors Actuators B Chem. 296, 126629 (2019)

    Google Scholar 

  77. S. Joshi, L.A. Jones, Y.M. Sabri, S.K. Bhargava, M.V. Sunkara, S.J. Ippolito, Facile conversion of zinc hydroxide carbonate to CaO-ZnO for selective CO2 gas detection. J. Colloid Interface Sci. 558, 310–322 (2020)

    PubMed  Google Scholar 

Download references

Acknowledgments

This work was funded by the Ministry of Higher Education and Scientific Research, Tunisia. Award number: PRF2019-D4P2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. El Mir.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jaballah, S., Dahman, H., Neri, G. et al. Effect of Al and Mg Co-doping on the Microstructural and Gas-Sensing Characteristics of ZnO Nanoparticles. J Inorg Organomet Polym 31, 1653–1667 (2021). https://doi.org/10.1007/s10904-020-01796-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-020-01796-z

Keywords

Navigation