Skip to main content

Advertisement

Log in

Structural, Optical, and Dielectric Properties of PVA-CMC/Ni0.65Cu0.35Fe2O4 Films for Optoelectronic Applications and Energy Storage Applications

  • Research
  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Nickel copper ferrite nanoparticles (NPs) in the form Ni0.65Cu0.35Fe2O4 were synthesized by the sol–gel method while PVA-CMC blend films were manufactured by cast method. The prepared films of PVA-CMC/(Ni0.65Cu0.35Fe2O4)x, where x = 2,4,6, and 8 wt%, were characterized using X-ray diffractometer (XRD) and Raman spectroscopy. The transmission and absorption spectra were investigated for PVA-CMC/Ni0.65Cu0.35Fe2O4 films using UV–visible spectrophotometer. The assessment of dielectric characteristics of the prepared PVA-CMC blend films was done by using broadband dielectric spectroscopy (BDS). XRD verified the production of face-centered cubic spinel structure of space group Fd3m with the lattice parameters a = 8.3310 Å for Ni0.65Cu0.35Fe2O4 NPs and the amorphous characteristics of blend films. Furthermore, XRD verified that Ni0.65Cu0.35Fe2O4 NPs were included in the blend matrix. The Raman spectra of the PVA-CMC blend films showed several strong characteristic scattering peaks. The optical bandgaps were evaluated via the Tauc’s model. The optical bandgap decreases from 5.50 to 5.05 eV and the Urbach energy increases from 1.35 to 2.99 eV, gradually, with increasing NPs’ concentrations. Moreover, the index of refraction rises from 1.776 (pure PVA-CMC) to 2.881 (PVA-CMC/8%Ni0.65Cu0.35Fe2O4). Also, it was discovered that as Ni0.65Cu0.35Fe2O4 NPs were added to the PVA-CMC blend matrix, optical conductivity increased as well. The results showed that the PVA/CMC blend films can be tailored by Ni0.65Cu0.35Fe2O4 additives which nominate it for optical devices applications. Three remarkable trends were investigated on the dielectric spectra of the investigated samples. The low frequency range shows a linear increase with decreasing frequency indicating the transport of the free charge carriers. Nano-confinement phenomenon affected in reducing the conductivity of the blend, even the conductivity of the nano-ferrite is higher in conductivity than the blend.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. A.M. El-naggar, Z.K. Heiba, A.M. Kamal, Y. Altowairqi, M.B. Mohamed, Impact of loading PVA/CMC/PVP blend with CdS0.9M0.1 non-stoichiometrically doped by transition metals (M). Opt. Mater. (Amsterdam) 133, 113085 (2022). https://doi.org/10.1016/J.OPTMAT.2022.113085

    Article  CAS  Google Scholar 

  2. S.S. Alharthi, A. Badawi, Tailoring the linear and nonlinear optical characteristics of PVA/PVP polymeric blend using Co0.9Cu0.1S nanoparticles for optical and photonic applications. Opt. Mater. (Amsterdam) 127, 112255 (2022). https://doi.org/10.1016/J.OPTMAT.2022.112255

    Article  CAS  Google Scholar 

  3. Z.K. Heiba, M. Bakr Mohamed, S.I. Ahmed, Exploring the physical properties of PVA/PEG polymeric material upon doping with nano gadolinium oxide. Alex. Eng. J. 61, 3375–3383 (2022). https://doi.org/10.1016/J.AEJ.2021.08.051

    Article  Google Scholar 

  4. Z.K. Heiba, M.B. Mohamed, A. Badawi, A.A. Alhazime, The role of Cd0.9Mg0.1S nanofillers on the structural, optical, and dielectric properties of PVA/CMC polymeric blend. Chem. Phys. Lett. 770, 138460 (2021). https://doi.org/10.1016/J.CPLETT.2021.138460

    Article  CAS  Google Scholar 

  5. A.M. El-naggar, Z.K. Heiba, M.B. Mohamed, A.M. Kamal, G. Lakshminarayana, O.H. Abd-Elkader, Effect of MnS/ZnS nanocomposite on the structural, linear and nonlinear optical properties of PVA/CMC blended polymer. Opt. Mater. (Amsterdam). (2022). https://doi.org/10.1016/J.OPTMAT.2022.112379

    Article  Google Scholar 

  6. J. Zhu, Q. Li, Y. Che, X. Liu, C. Dong, X. Chen, C. Wang, Effect of Na2CO3 on the microstructure and macroscopic properties and mechanism analysis of PVA/CMC composite film. Polymers (Basel) (2020). https://doi.org/10.3390/POLYM12020453

    Article  PubMed  PubMed Central  Google Scholar 

  7. S. Naghash-Hamed, N. Arsalani, S.B. Mousavi, The catalytic performance of CuFe2O4@CQD nanocomposite as a high-perform heterogeneous nanocatalyst in nitroaniline group reduction. Sci. Rep. 13, 1–17 (2023). https://doi.org/10.1038/s41598-023-28935-z

    Article  CAS  Google Scholar 

  8. S. Naghash-Hamed, N. Arsalani, S.B. Mousavi, The catalytic reduction of nitroanilines using synthesized CuFe2O4 nanoparticles in an aqueous medium. ChemistryOpen 11, 1–10 (2022). https://doi.org/10.1002/open.202200156

    Article  CAS  Google Scholar 

  9. S. Gandhi, R.H.H. Subramani, T. Ramakrishnan, A. Sivabalan, V. Dhanalakshmi, M.R.G. Nair, R. Anbarasan, Ultrasound assisted one pot synthesis of nano-sized CuO and its nanocomposite with poly(vinyl alcohol). J. Mater. Sci. 45, 1688–1694 (2010). https://doi.org/10.1007/s10853-009-4158-4

    Article  CAS  Google Scholar 

  10. E. Sobhani, S.Z. Heris, S.B. Mousavi, The synergistic effect of intumescent fire-resistive paint containing TiO2 nanoparticles and chlorinated paraffin onto atmospheric-metallic substrates. ChemistrySelect (2022). https://doi.org/10.1002/slct.202203513

    Article  Google Scholar 

  11. F. Yousefi, S.B. Mousavi, S.Z. Heris, S. Naghash-Hamed, UV-shielding properties of a cost-effective hybrid PMMA-based thin film coatings using TiO2 and ZnO nanoparticles: a comprehensive evaluation. Sci. Rep. 13, 1–19 (2023). https://doi.org/10.1038/s41598-023-34120-z

    Article  CAS  Google Scholar 

  12. S.O. Aisida, P.A. Akpa, I. Ahmad, M. Maaza, F.I. Ezema, Influence of PVA, PVP and PEG doping on the optical, structural, morphological and magnetic properties of zinc ferrite nanoparticles produced by thermal method. Phys. B Condens. Matter. 571, 130–136 (2019). https://doi.org/10.1016/J.PHYSB.2019.07.001

    Article  CAS  Google Scholar 

  13. Z.K. Heiba, M.B. Mohamed, N.Y. Mostafa, A.M. El-Naggar, Structural and Optical properties of Cd1−xMnxFe2O4/PMMA nanocomposites. J. Inorg. Organomet. Polym. Mater. 30, 1898–1906 (2020). https://doi.org/10.1007/s10904-019-01320-y

    Article  CAS  Google Scholar 

  14. A.M. El-Naggar, Z.K. Heiba, A.M. Kamal, O.H. Abd-Elkader, M.B. Mohamed, Structural, optical, and dielectric performance of PVA/PVP/PEG blend loaded with nano CoFe2−xErxO4 ferrite. J. Mater. Sci. Mater. Electron. 34, 1–14 (2023). https://doi.org/10.1007/s10854-023-10016-6

    Article  CAS  Google Scholar 

  15. B. Alshahrani, H.I. ElSaeedy, S. Fares, A.H. Korna, H.A. Yakout, M.I.A.A. Maksoud, R.A. Fahim, A.H. Ashour, A.S. Awed, The effect of gamma irradiation on structural, optical, and dispersion properties of PVA/Zn0.5Co0.4Ag0.2Fe2O4 nanocomposite films. J. Mater. Sci. Mater. Electron. 32, 13336–13349 (2021). https://doi.org/10.1007/s10854-021-05913-7

    Article  CAS  Google Scholar 

  16. S.O. Aisida, I. Ahmad, T. kai Zhao, M. Maaza, F.I. Ezema, Calcination effect on the photoluminescence, optical, structural, and magnetic properties of polyvinyl alcohol doped ZnFe2O4 nanoparticles. J. Macromol. Sci. Part B 59, 295–308 (2020). https://doi.org/10.1080/00222348.2020.1713519

    Article  CAS  Google Scholar 

  17. T.A. Taha, S. Elrabaie, M.T. Attia, Exploring the structural, thermal and dielectric properties of PVA/Ni0.5Zn0.5Fe2O4 composites. J. Electron. Mater. 48, 6797–6806 (2019). https://doi.org/10.1007/s11664-019-07491-1

    Article  CAS  Google Scholar 

  18. H.M. Alghamdi, A. Rajeh, Synthesis of CoFe2O4/MWCNTs nanohybrid and its effect on the optical, thermal, and conductivity of PVA/CMC composite as an application in electrochemical devices. J. Inorg. Organomet. Polym. Mater. 32, 1935–1949 (2022). https://doi.org/10.1007/S10904-022-02322-Z/FIGURES/13

    Article  CAS  Google Scholar 

  19. A.A. Al-Muntaser, R.A. Pashameah, K. Sharma, E. Alzahrani, M.O. Farea, M.A. Morsi, α-MoO3 nanobelts/CMC-PVA nanocomposites: hybrid materials for optoelectronic and dielectric applications. J. Polym. Res. 29, 1–11 (2022). https://doi.org/10.1007/S10965-022-03134-Y/FIGURES/8

    Article  Google Scholar 

  20. G.M. Asnag, N.S. Awwad, H.A. Ibrahium, M.E. Moustapha, M.S. Alqahtani, A.A. Menazea, One-pot pulsed laser ablation route assisted molybdenum trioxide nano-belts doped in PVA/CMC blend for the optical and electrical properties enhancement. J. Inorg. Organomet. Polym. Mater. 32, 2056–2064 (2022). https://doi.org/10.1007/S10904-022-02257-5/FIGURES/11

    Article  CAS  Google Scholar 

  21. A. El Askary, N.S. Awwad, H.A. Ibrahium, M.E. Moustapha, A.A. Menazea, Thermal, optical and electrical properties of WO3/carboxymethyl cellulose/polyvinyl alcohol composite synthesized by laser ablation. J. Polym. Res. 29, 1–12 (2022). https://doi.org/10.1007/S10965-022-02993-9/FIGURES/8

    Article  Google Scholar 

  22. A. El Askary, M. El-Sharnouby, N.S. Awwad, H.A. Ibrahium, M.A. El-Morsy, M.O. Farea, A.A. Menazea, Optical, thermal, and electrical conductivity strength of ternary CMC/PVA/Er2O3 NPs nanocomposite fabricated via pulsed laser ablation. Phys. B Condens. Matter. 637, 413910 (2022). https://doi.org/10.1016/J.PHYSB.2022.413910

    Article  Google Scholar 

  23. D.A. Nasrallah, M.A. Ibrahim, Enhancement of physico–chemical, optical, dielectric and antimicrobial properties of polyvinyl alcohol/carboxymethyl cellulose blend films by addition of silver doped hydroxyapatite nanoparticles. J. Polym. Res. 29, 1–20 (2022). https://doi.org/10.1007/S10965-022-02943-5/TABLES/3

    Article  Google Scholar 

  24. M.M. Abutalib, A. Rajeh, Boosting optical and electrical characteristics of polyvinyl alcohol/carboxymethyl cellulose nanocomposites by GNPs/MWCNTs fillers as an application in energy storage devices. Int. J. Energy Res. 46, 6216–6224 (2022). https://doi.org/10.1002/ER.7559

    Article  CAS  Google Scholar 

  25. R.A. Pashameah, M. El-Sharnouby, A. El-Askary, M.A. El-Morsy, H.A. Ahmed, A.A. Menazea, Optical, structural, electrical characterization of (polyvinyl alcohol–carboxymethyl cellulose-manganese dioxide) nanocomposite fabricated via laser ablation. J. Inorg. Organomet. Polym. Mater. 1, 1–10 (2022). https://doi.org/10.1007/S10904-022-02311-2/FIGURES/10

    Article  Google Scholar 

  26. M.R. Atta, Q.A. Alsulami, G.M. Asnag, A. Rajeh, Enhanced optical, morphological, dielectric, and conductivity properties of gold nanoparticles doped with PVA/CMC blend as an application in organoelectronic devices. J. Mater. Sci. Mater. Electron. 32, 10443–10457 (2021). https://doi.org/10.1007/S10854-021-05701-3/FIGURES/12

    Article  CAS  Google Scholar 

  27. M.A. Morsi, G.M. Asnag, A. Rajeh, N.S. Awwad, Nd:YAG nanosecond laser induced growth of au nanoparticles within CMC/PVA matrix: multifunctional nanocomposites with tunable optical and electrical properties. Compos. Commun. 24, 100662 (2021). https://doi.org/10.1016/J.COCO.2021.100662

    Article  Google Scholar 

  28. M.A. Morsi, A.H. Oraby, A.G. Elshahawy, R.M. Abd El-Hady, Preparation, structural analysis, morphological investigation and electrical properties of gold nanoparticles filled polyvinyl alcohol/carboxymethyl cellulose blend. J. Mater. Res. Technol. 8, 5996–6010 (2019). https://doi.org/10.1016/J.JMRT.2019.09.074

    Article  CAS  Google Scholar 

  29. S. El-Gamal, A.M. El Sayed, E.E. Abdel-Hady, Effect of cobalt oxide nanoparticles on the nano-scale free volume and optical properties of biodegradable CMC/PVA films. J. Polym. Environ. 26, 2536–2545 (2018). https://doi.org/10.1007/S10924-017-1151-X/FIGURES/11

    Article  CAS  Google Scholar 

  30. S. Naghash-Hamed, N. Arsalani, S.B. Mousavi, Facile fabrication of CuFe2O4 coated with carbon quantum dots nanocomposite as an efficient heterogeneous catalyst toward the reduction of nitroaniline compounds for management of aquatic resources. J. Photochem. Photobiol. A Chem. 443, 114822 (2023). https://doi.org/10.1016/j.jphotochem.2023.114822

    Article  CAS  Google Scholar 

  31. S. Naghash-Hamed, N. Arsalani, S.B. Mousavi, Facile copper ferrite/carbon quantum dot magnetic nanocomposite as an effective nanocatalyst for reduction of para-nitroaniline and Ortho-Nitroaniline. Nano Futur. 6, 0–21 (2022). https://doi.org/10.1088/2399-1984/ac9a19

    Article  Google Scholar 

  32. B. Yalcin, S. Ozcelik, K. Icin, K. Senturk, B. Ozcelik, L. Arda, Structural, optical, magnetic, photocatalytic activity and related biological effects of CoFe2O4 ferrite nanoparticles. J. Mater. Sci. Mater. Electron. 32, 13068–13080 (2021). https://doi.org/10.1007/s10854-021-05752-6

    Article  CAS  Google Scholar 

  33. F. Kremer, A. Schönhals, Broadband dielectric spectroscopy (Springer, Berlin, 2002). https://doi.org/10.1007/978-3-642-56120-7

    Book  Google Scholar 

  34. A.M. Youssef, M.E. Abdel-Aziz, E.S.A. El-Sayed, M.S. Abdel-Aziz, A.A. Abd El-Hakim, S. Kamel, G. Turky, Morphological, electrical & antibacterial properties of trilayered Cs/PAA/PPy bionanocomposites hydrogel based on Fe3O4-NPs. Carbohydr. Polym. 196, 483–493 (2018). https://doi.org/10.1016/J.CARBPOL.2018.05.065

    Article  CAS  PubMed  Google Scholar 

  35. S.H. El-Sabbagh, N.M. Ahmed, G.M. Turky, M.M. Selim, Rubber nanocomposites with new core-shell metal oxides as nanofillers, in Progress rubber nanocomposites. ed. by S. Thomas, H.J. Maria (Woodhead Publishing, Delhi, 2017), pp.249–283. https://doi.org/10.1016/B978-0-08-100409-8.00008-5

    Chapter  Google Scholar 

  36. N.S. El-Sayed, M.E. Abd El-Aziz, S. Kamel, G. Turky, Synthesis and characterization of polyaniline/tosylcellulose stearate composites as promising semiconducting materials. Synth. Met. 236, 44–53 (2018). https://doi.org/10.1016/J.SYNTHMET.2018.01.001

    Article  CAS  Google Scholar 

  37. S.B. Mousavi, S. Zeinali Heris, P. Estellé, Viscosity, tribological and physicochemical features of ZnO and MoS2 diesel oil-based nanofluids: an experimental study. Fuel 293, 120481 (2021). https://doi.org/10.1016/j.fuel.2021.120481

    Article  CAS  Google Scholar 

  38. S.B. Mousavi, S. Zeinali Heris, Experimental investigation of ZnO nanoparticles effects on thermophysical and tribological properties of diesel oil. Int. J. Hydrog. Energy 45, 23603–23614 (2020). https://doi.org/10.1016/j.ijhydene.2020.05.259

    Article  CAS  Google Scholar 

  39. S.B. Mousavi, S. Zeinali Heris, M.G. Hosseini, Experimental investigation of MoS2/diesel oil nanofluid thermophysical and rheological properties. Int. Commun. Heat Mass Transf. 108, 104298 (2019). https://doi.org/10.1016/j.icheatmasstransfer.2019.104298

    Article  CAS  Google Scholar 

  40. F.M. Ali, R.M. Kershi, M.A. Sayed, Y.M. AbouDeif, Evaluation of structural and optical properties of Ce3+ ions doped (PVA/PVP) composite films for new organic semiconductors. Phys. B Condens. Matter 538, 160–166 (2018). https://doi.org/10.1016/J.PHYSB.2018.03.031

    Article  CAS  Google Scholar 

  41. G. Mohammed, A.M. El Sayed, W.M. Morsi, Spectroscopic, thermal, and electrical properties of MgO/polyvinyl pyrrolidone/polyvinyl alcohol nanocomposites. J. Phys. Chem. Solids 115, 238–247 (2018). https://doi.org/10.1016/J.JPCS.2017.12.050

    Article  CAS  Google Scholar 

  42. R.N. Abed, M. Kadhom, D.S. Ahmed, A. Hadawey, E. Yousif, Enhancing optical properties of modified PVC and Cr2O3 nanocomposite. Trans. Electr. Electron. Mater. 1, 3 (2020). https://doi.org/10.1007/s42341-020-00242-8

    Article  Google Scholar 

  43. A.M.A. Henaish, A.S. Abouhaswa, Effect of WO3 nanoparticle doping on the physical properties of PVC polymer. Bull. Mater. Sci. 43, 149 (2020). https://doi.org/10.1007/s12034-020-02109-3

    Article  CAS  Google Scholar 

  44. T.S. Soliman, A.S. Abouhaswa, Synthesis and structural of Cd0.5Zn0.5F2O4 nanoparticles and its influence on the structure and optical properties of polyvinyl alcohol films. J. Mater. Sci. Mater. Electron. 31, 9666–9674 (2020). https://doi.org/10.1007/s10854-020-03512-6

    Article  CAS  Google Scholar 

  45. A. Badawi, S.S. Alharthi, M.G. Althobaiti, A.N. Alharbi, The effect of iron oxide content on the structural and optical parameters of polyvinyl alcohol/graphene nanocomposite films. J. Vinyl Addit. Technol. 28, 235–246 (2022). https://doi.org/10.1002/VNL.21889

    Article  CAS  Google Scholar 

  46. A.S. Abouhaswa, M.H. Badr, M.H. Nasr, M.M. Elkholy, L.M.S. El-Deen, G.M. Turky, M. Moustafa, A.A. EL-Hamalawy, Investigation of crystal structure, electrical and magnetic properties of spinel Mn-Cd ferrite nanoparticles. J. Inorg. Organomet. Polym. Mater. 32, 486–498 (2022). https://doi.org/10.1007/S10904-021-02116-9/FIGURES/15

    Article  CAS  Google Scholar 

  47. A.M. Moustafa, S.A. Gad, G.M. Turky, L.M. Salah, Structural, magnetic, and dielectric spectroscopy investigations of multiferroic composite based on Perovskite–Spinel approach. ECS J. Solid State Sci. Technol. 11, 033008 (2022). https://doi.org/10.1149/2162-8777/AC5C7D

    Article  CAS  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

ASA and TSS performed all the experimental work (sample preparation and its characterization) and prepared manuscript. GMT performed the dielectric measurements and its discussion.

Corresponding author

Correspondence to A. S. Abouhaswa.

Ethics declarations

Competing Interests

There is no conflict of interest among the contributing authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abouhaswa, A.S., Turky, G.M. & Soliman, T.S. Structural, Optical, and Dielectric Properties of PVA-CMC/Ni0.65Cu0.35Fe2O4 Films for Optoelectronic Applications and Energy Storage Applications. J Inorg Organomet Polym 34, 1699–1711 (2024). https://doi.org/10.1007/s10904-023-02911-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-023-02911-6

Keywords

Navigation