Skip to main content
Log in

Fe and Rh Doping Nanoarchitectonics on Properties of Sr2YGaX2O7 Pyrochlore Oxides with a DFT-Based Spin-Polarized Calculation for Optoelectronic and Thermoelectric Applications

  • Research
  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

This study examined the potential consequences of doping on Sr2YGaX2O7(X = Fe, Rh) photovoltaic properties. Density functional theory (DFT) was used to calculate pyrochlore oxides’ energy band structure and optical characteristics using the full potential linearized augmented plane wave (FP-LAPW) method. The generalized gradient approximation (GGA + U) was utilized to treat the exchange and correlation potential. We studied the metallic atoms Fe, Rh, Y, and Ga orbital electronic states. The utilization of the complex dielectric function facilitated the computation of various optical properties such as the energy band dispersion statistics, absorption coefficient, reflectivity, energy loss function, refractive index, extinction coefficient, and real optical conductivity parameters. We employed Boltzmann transport theory to delve deeper into the electrical transport characteristics (specifically thermoelectric properties) of Fe and Rh-doped pyrochlore oxides in the temperature range of 0–800 K. It is observed that the Sr2YGaRh2O7 compound indicated higher values of ZT 0.9, 1.25 for 50 K and 800 K, respectively. Further, both the compounds exhibit p-type nature as their seebeck coefficient shows a positive region between 50 and 800 K. The materials with strong thermoelectric properties are assumed in high reflectivity zone and potentially effective in solar heating.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig.2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data Availability

All the related data is available from the authors upon request.

References

  1. Z. Abbas, S. Hussain, S. Muhammad, S.M. Siddeeg, J. Jung, A first-principles investigation on the structural, optoelectronic, and thermoelectric properties of pyrochlore oxides (La2Tm2O7 (Tm= Hf, Zr)) for energy applications. Int. J. Mol. Sci. 23(23), 15266 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. C. Zhao, C.F. Cheung, P. Xu, High-efficiency sub-microscale uncertainty measurement method using pattern recognition. ISA Trans. 101, 503–514 (2020)

    Article  PubMed  Google Scholar 

  3. J. Luo, H. Han, X. Wang, X. Qiu, B. Liu, Y. Lai, X. Chen, R. Zhong, L. Wang, C. Wang, Single-atom Nb anchored on graphitic carbon nitride for boosting electron transfer towards improved photocatalytic performance. Appl. Catal. B 328, 122495 (2023)

    Article  CAS  Google Scholar 

  4. N. Vittayakorn, G. Rujijanagul, T. Tunkasiri, X. Tan, D.P. Cann, Perovskite phase formation and ferroelectric properties of the lead nickel niobate–lead zinc niobate–lead zirconate titanate ternary system. J. Mater. Res. 18(12), 2882–2889 (2003)

    Article  CAS  Google Scholar 

  5. S. Sun, L. Zhu, B. Zhang, L. Zhang, Y. Li, N. Cheng, X. Yin, Y. Tian, X. Li, Y. Lu, Structural modulation enables magneto-dielectric effect and enhanced photoactivity in ferroelectric bismuth iron niobate pyrochlore. J. Mater. Chem. C 7(5), 1263–1272 (2019)

    Article  CAS  Google Scholar 

  6. M. Saiduzzaman, Study on Preparation and Characterization of New Bismuth Oxides by Hydrothermal Reactions (University of Yamanashi, Kofu, 2019)

    Google Scholar 

  7. S. Tamboli, G.B. Nair, Z. Xia, S. Dhoble, H. Swart, Blue-light pumped NIR emission of LaOF: Pr3+ nanorods for highly sensitive nanothermometry. Ceram. Int. 49(14), 23579–23590 (2023)

    Article  CAS  Google Scholar 

  8. H. Yu, J. Zhu, R. Qiao, N. Zhao, M. Zhao, L. Kong, Facile preparation and controllable absorption of a composite based on PMo12/Ag nanoparticles: photodegradation activity and mechanism”. ChemistrySelect 7(2), e202103668 (2022)

    Article  CAS  Google Scholar 

  9. L. Kong, Y. Liu, L. Dong, L. Zhang, L. Qiao, W. Wang, H. You, Enhanced red luminescence in CaAl 12 O 19: Mn 4+ via doping Ga 3+ for plant growth lighting. Dalton Trans. 49(6), 1947–1954 (2020)

    Article  CAS  PubMed  Google Scholar 

  10. M.S.S. Danish, L.L. Estrella, I.M.A. Alemaida, A. Lisin, N. Moiseev, M. Ahmadi, M. Nazari, M. Wali, H. Zaheb, T. Senjyu, Photocatalytic applications of metal oxides for sustainable environmental remediation. Metals 11(1), 80 (2021)

    Article  CAS  Google Scholar 

  11. S. Sun, Y. Liu, Q. Li, T. Wang, F. Chu, Short-term multi-step wind power forecasting based on spatio-temporal correlations and transformer neural networks. Energy Convers. Manage. 283, 116916 (2023)

    Article  Google Scholar 

  12. K. Fatima, Z. Abbas, A. Naz, T. Alshahrani, Y. Chaib, S.H.A. Jaffery, S. Muhammad, S. Hussain, J. Jung, H. Algarni, Shedding light on the structural, optoelectronic, and thermoelectric properties of pyrochlore oxides (La2Q2O7 (Q= Ge, Sn)) for energy applications: a first-principles investigation. J. Solid State Chem. 313, 123305 (2022)

    Article  CAS  Google Scholar 

  13. Z. Miao, X. Meng, L. Liu, Design a new thermoelectric module with high practicability based on experimental measurement. Energy Convers. Manage. 241, 114320 (2021)

    Article  CAS  Google Scholar 

  14. S. Mekhilef, R. Saidur, A. Safari, A review on solar energy use in industries. Renew. Sustain. Energy Rev. 15(4), 1777–1790 (2011)

    Article  Google Scholar 

  15. L. Kong, H. Sun, Y. Nie, Y. Yan, R. Wang, Q. Ding, S. Zhang, H. Yu, G. Luan, Luminescent properties and charge compensator effects of SrMo0. 5W0. 5O4: Eu3+ for white light LEDs. Molecules 28(6), 2681 (2023)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. X. He, S. Xie, J. Xu, X.-B. Yin, M. Zhang, Reactive template-engaged synthesis of NiS x/MoS2 nanosheets decorated on hollow and porous carbon microtubes with optimal electronic modulation toward high-performance enzyme-like performance. Inorg. Chem. (2023). https://doi.org/10.1021/acs.inorgchem.3c01050

    Article  PubMed  PubMed Central  Google Scholar 

  17. M.B. by Silanes, A. Franquet, T. Van Schaftinghen, H. Terryn, V. Su-bramanian, W.J. van Ooij, J. Vereecken, Study of silane films on aluminium by spectroscopic ellipso-metry and auger electron spectrocopy. ATB Métal-lurgie 40/41, 207–212 (2001)

    Google Scholar 

  18. H. Zhu, J. Su, F. Yang, Y. Wu, J. Ye, K. Huang, Y. Yang, Effect of lossy thin-walled cylindrical food containers on microwave heating performance. J. Food Eng. 337, 111232 (2023)

    Article  Google Scholar 

  19. C.N. Rao, Chemical synthesis of solid inorganic materials. Mater. Sci. Eng. B 18(1), 1–21 (1993)

    Article  Google Scholar 

  20. Z. Miao, X. Meng, S. Zhou, M. Zhu, Thermo-mechanical analysis on thermoelectric legs arrangement of thermoelectric modules. Renew. Energy 147, 2272–2278 (2020)

    Article  Google Scholar 

  21. T. Zhu, Y. Liu, C. Fu, J.P. Heremans, J.G. Snyder, X. Zhao, Compromise and synergy in high-efficiency thermoelectric materials. Adv. Mater. 29(14), 1605884 (2017)

    Article  Google Scholar 

  22. A.S. Botana, M. Norman, Layered palladates and their relation to nickelates and cuprates. Phys. Rev. Mater. 2(10), 104803 (2018)

    Article  CAS  Google Scholar 

  23. X. Zhang, Y. Tang, F. Zhang, C.S. Lee, A novel aluminum–graphite dual-ion battery. Adv. Energy Mater. 6(11), 1502588 (2016)

    Article  Google Scholar 

  24. G. Wei, Y. Zuo, F. Luo, W. Yuan, F. Dong, Y. Liu, X. Lu, Investigation of mechanical and thermodynamic properties of La2Zr2O7 pyrochlore. Int. J. Energy Res. 46(2), 2011–2020 (2022)

    Article  CAS  Google Scholar 

  25. F. Luo, H. Tang, X. Shu, Z. Chen, C. Xu, G. Wei, D. Wu, S. Chen, H. Zhang, Y. Xie, Immobilization of simulated An3+ into synthetic Gd2Zr2O7 ceramic by SPS without occupation or valence design. Ceram. Int. 47(5), 6329–6335 (2021)

    Article  CAS  Google Scholar 

  26. L. Cai, Y. Lu, H. Zhu, Performance enhancement of on-chip optical switch and memory using Ge2Sb2Te5 slot-assisted microring resonator. Opt. Lasers Eng. 162, 107436 (2023)

    Article  Google Scholar 

  27. S. Du, J. Yin, H. Xie, Y. Sun, T. Fang, Y. Wang, J. Li, D. Xiao, X. Yang, S. Zhang, Auger scattering dynamic of photo-excited hot carriers in nano-graphite film. Appl. Phys. Lett. (2022). https://doi.org/10.1063/5.0116720

    Article  Google Scholar 

  28. P. Pitriana, T.D.K. Wungu, R. Hidayat, The characteristics of band structures and crystal binding in all-inorganic perovskite APbBr 3 studied by the first principle calculations using the density functional theory (DFT) method. Results Phys. 15, 102592 (2019)

    Article  Google Scholar 

  29. C. Yang, R. Guo, X. Jing, P. Li, J. Yuan, Y. Wu, Degradation mechanism and modeling study on reversible solid oxide cell in dual-mode—a review. Int. J. Hydrogen Energy 47(89), 37895–37928 (2022)

    Article  CAS  Google Scholar 

  30. D. Rai, M. Ghimire, R. Thapa, A DFT study of BeX (X= S, Se, Te) semiconductor: modified Becke Johnson (mBJ) potential. Semiconductors 48, 1411–1422 (2014)

    Article  CAS  Google Scholar 

  31. Y. Zhou, Z. Sun, X. Wang, S. Chen, Ab initio geometry optimization and ground state properties of layered ternary carbides Ti3MC2 (M= Al, Si and Ge). J. Phys. Condens. Matter 13(44), 10001 (2001)

    Article  CAS  Google Scholar 

  32. Z. Sun, T. Wang, R. Zhang, H. Li, Y. Wu, S. Toan, Z. Sun, Boosting hydrogen production via deoxygenation-sorption-enhanced biomass gasification. Biores. Technol. 382, 129197 (2023)

    Article  CAS  Google Scholar 

  33. Z. Sun, C.K. Russell, K.J. Whitty, E.G. Eddings, J. Dai, Y. Zhang, M. Fan, Z. Sun, Chemical looping-based energy transformation via lattice oxygen modulated selective oxidation. Prog. Energy Combust. Sci. 96, 101045 (2023)

    Article  Google Scholar 

  34. A. Martinez, A.P. Byrnes, Modeling dielectric-constant values of geologic materials: an aid to ground-penetrating radar data collection and interpretation. Curr. Res. Earth Sci. (2001). https://doi.org/10.17161/cres.v0i247.11831

    Article  Google Scholar 

  35. Z. Liu, B. Fan, J. Zhao, B. Yang, X. Zheng, Benzothiazole derivatives-based supramolecular assemblies as efficient corrosion inhibitors for copper in artificial seawater: formation, interfacial release and protective mechanisms. Corros. Sci. 212, 110957 (2023)

    Article  CAS  Google Scholar 

  36. Y. Liu, B. Fan, B. Xu, B. Yang, Ambient-stable polyethyleneimine functionalized Ti3C2Tx nanohybrid corrosion inhibitor for copper in alkaline electrolyte. Mater. Lett. 337, 133979 (2023)

    Article  CAS  Google Scholar 

  37. E. Hwang, S.D. Sarma, Dielectric function, screening, and plasmons in two-dimensional graphene. Phys. Rev. B 75(20), 205418 (2007)

    Article  Google Scholar 

  38. J.A. Geiger, Measurement quantization describes history of universe—quantum inflation, transition to expansion, CMB power spectrum. J. High Energy Phys. Gravit. Cosmol. 6(2), 186–224 (2020)

    Article  CAS  Google Scholar 

  39. A. Fridman, S. Nester, L.A. Kennedy, A. Saveliev, O. Mutaf-Yardimci, Gliding arc gas discharge. Prog. Energy Combust. Sci. 25(2), 211–231 (1999)

    Article  CAS  Google Scholar 

  40. R. Levinson, P. Berdahl, H. Akbari, Solar spectral optical properties of pigments—part I: model for deriving scattering and absorption coefficients from transmittance and reflectance measurements. Sol. Energy Mater. Sol. Cells 89(4), 319–349 (2005)

    Article  CAS  Google Scholar 

  41. E. Weingartner, H. Saathoff, M. Schnaiter, N. Streit, B. Bitnar, U. Baltensperger, Absorption of light by soot particles: determination of the absorption coefficient by means of aethalometers. J. Aerosol Sci. 34(10), 1445–1463 (2003)

    Article  CAS  Google Scholar 

  42. Y. Zhang, X. Liu, M. Song, Z. Qin, Tuning the red-to-green-upconversion luminescence intensity ratio of Na3ScF6: 20% Yb3+, 2% Er3+ particles by changes in size. Materials 16(6), 2247 (2023)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Y. Zheng, Y. Liu, X. Guo, Z. Chen, W. Zhang, Y. Wang, X. Tang, Y. Zhang, Y. Zhao, Sulfur-doped g-C3N4/rGO porous nanosheets for highly efficient photocatalytic degradation of refractory contaminants. J. Mater. Sci. Technol. 41, 117–126 (2020)

    Article  CAS  Google Scholar 

  44. M. Upadhyay, S.U. Lego, Refractive index of acetone-water mixture at different concentrations. Am. Int. J. Res. Sci. Technol. Eng. Math. 20(1), 77 (2017)

    Google Scholar 

  45. X.-R. Zhao, Y.-C. Zhang, Z.-W. Hou, L. Wang, Chloride-promoted photoelectrochemical C—H silylation of heteroarenes †. Chin. J. Chem. (2023). https://doi.org/10.1002/cjoc.202300288

    Article  Google Scholar 

  46. H.-J. Hagemann, W. Gudat, C. Kunz, Optical constants from the far infrared to the x-ray region: Mg, Al, Cu, Ag, Au, Bi, C, and Al 2 O 3. JOSA 65(6), 742–744 (1975)

    Article  CAS  Google Scholar 

  47. Y. Cui, K. Mu, X. Wang, Y. Zhang, C. Zhang, In Measurement of mixtures of melamine using THz ray, International Symposium on Photoelectronic Detection and Imaging 2009: Terahertz and High Energy Radiation Detection Technologies and Applications, SPIE, pp 376-384, 2009

  48. V.G. Veselago, Electrodynamics of substances with simultaneously negative and. Usp. fiz. nauk 92(7), 517 (1967)

    Article  CAS  Google Scholar 

  49. J.T. Mazumder, R. Mayengbam, S. Tripathy, Theoretical investigation on structural, electronic, optical and elastic properties of TiO2, SnO2, ZrO2 and HfO2 using SCAN meta-GGA functional: a DFT study. Mater. Chem. Phys. 254, 123474 (2020)

    Article  CAS  Google Scholar 

  50. V. Gusynin, S. Sharapov, J. Carbotte, Sum rules for the optical and hall conductivity in graphene. Phys. Rev. B 75(16), 165407 (2007)

    Article  Google Scholar 

  51. K. El Shabrawy, K. Maharatna, D. Bagnall, B.M. Al-Hashimi, Modeling SWCNT bandgap and effective mass variation using a Monte Carlo approach. IEEE Trans. Nanotechnol. 9(2), 184–193 (2009)

    Article  Google Scholar 

  52. S. Berri, K. Kaur, D.C. Gupta, S.A. Sofi, J. Singh, M. Srinivasana, A.F. Wani, I.U.N. Lone, Tailoring the inherent magnetism and thermoelectric response of pyrochlore oxide A2B2O7 (A= Er, B= Ru, Sn, Ge, Pt): a computational approach. J. Supercond. Nov. Magn. 36(4), 1203–1215 (2023)

    Article  CAS  Google Scholar 

  53. E.D. Trutman, R.S. Newbower, A practical analysis of the electrical conductivity of blood. IEEE Trans. Biomed. Eng. 3, 141–154 (1983)

    Article  Google Scholar 

  54. R.L. Hamilton, O. Crosser, Thermal conductivity of heterogeneous two-component systems. Ind. Eng. Chem. Fundam. 1(3), 187–191 (1962)

    Article  CAS  Google Scholar 

  55. A.-S. Hadi, B.E. Hill, M.N. Issahaq, Performance characteristics of custom thermocouples for specialized applications. Crystals 11(4), 377 (2021)

    Article  CAS  Google Scholar 

  56. M. Wolf, R. Hinterding, A. Feldhoff, High power factor vs. high zT—a review of thermoelectric materials for high-temperature application. Entropy 21(11), 1058 (2019)

    Article  CAS  PubMed Central  Google Scholar 

  57. J.R. Sootsman, H. Kong, C. Uher, J.J. D’Angelo, C.I. Wu, T.P. Hogan, T. Caillat, M.G. Kanatzidis, Large enhancements in the thermoelectric power factor of bulk PbTe at high temperature by synergistic nanostructuring. Angew. Chem. 120(45), 8746–8750 (2008)

    Article  Google Scholar 

  58. S.-I. Takagi, A. Toriumi, M. Iwase, H. Tango, On the universality of inversion layer mobility in Si MOSFET’s: part I-effects of substrate impurity concentration. IEEE Trans. Electron Devices 41(12), 2357–2362 (1994)

    Article  CAS  Google Scholar 

  59. A.J. Leenheer, J.D. Perkins, M.F. Van Hest, J.J. Berry, R.P. O’Hayre, D.S. Ginley, General mobility and carrier concentration relationship in transparent amorphous indium zinc oxide films. Phys. Rev. B 77(11), 115215 (2008)

    Article  Google Scholar 

  60. Y. Pei, A. LaLonde, S. Iwanaga, G.J. Snyder, High thermoelectric figure of merit in heavy hole dominated PbTe. Energy Environ. Sci. 4(6), 2085–2089 (2011)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The Authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through Large Groups Project under Grant Number (2/8/44).

Funding

This study was supported by Deanship of Scientific Research, King Khalid University, (2/8/44).

Author information

Authors and Affiliations

Authors

Contributions

The Author, SUA and MI, suggested the idea. MI has done calculations of the material. SUA, MMH, and SME analyzed the data. Authors EAA, MHT, GFBS, EAMS, AAE, MMH and MA helped to write the initial draft and helped to improve the manuscript till the final version. The manuscript was written through the contributions of all authors. All authors have approved the final version of the manuscript.

Corresponding authors

Correspondence to Muhammad Irfan or Sana Ullah Asif.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Irfan, M., Shaheen, N., Solre, G.F.B. et al. Fe and Rh Doping Nanoarchitectonics on Properties of Sr2YGaX2O7 Pyrochlore Oxides with a DFT-Based Spin-Polarized Calculation for Optoelectronic and Thermoelectric Applications. J Inorg Organomet Polym 34, 952–968 (2024). https://doi.org/10.1007/s10904-023-02845-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-023-02845-z

Keywords

Navigation