Skip to main content
Log in

The optical and electronic properties of inorganic halide perovskite Sr3NCl3 under applied biaxial strain

  • Electronic materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The outstanding structural, electronic, and optical properties of inorganic perovskite materials have gained significant attention in the field of solar technology in recent times. This particular Perovskite demonstrates exceptional optoelectronic properties, such as strong light absorption, extended carrier diffusion distances, and efficient charge transfer. Sr3NCl3 is a material that belongs to the family of inorganic metal halide perovskites and possesses a cubic perovskite crystal structure, which is classified under the space group Pm-3m (No. 221). This study extensively examined the impact of biaxial compressive and tensile strain on the structural, optical, and electronic properties of the inorganic cubic perovskite Sr3NCl3 using density functional theory (DFT) based on first-principles calculations. The unstrained planar Sr3NCl3 molecule exhibits a direct bandgap of 1.252 eV at the Γ point. However, when accounting for the relativistic spin-orbital coupling (SOC) effect in the calculations, the bandgap of the Sr3NCl3 perovskite is reduced to 1.247 eV. When subjected to compressive strain, the bandgap of all structures decreases, but under tensile strain, it increases. The properties of this material, such as its dielectric function, absorption coefficient, and electron loss function, indicate that it can strongly absorb visible light because of its band properties. Moreover, the photon energy spectrum shows a redshift (blueshift) in the absorption coefficient and dielectric function with increasing compressive (tensile) strain. Consequently, investigating the strain-dependent optical and electronic properties of Sr3NCl3 in this study could provide valuable insights into its potential applications in optoelectronics and solar cell design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Fig.7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

Data and code availability

All data and code are available in this link. https://doi.org/10.5281/zenodo.7950505. Procedure for using data and code: (1) Using quantum espresso software in Linux operating system for running all the code. (2) Make a pseudofile with the pseudopotential of Sr, N, and Cl. (3) Run the scf file by using the command: pw.x < Sr3NCl3.scf.in > Sr3NCl3.scf.out. (4) Run the nscf file by using the command: pw.x < Sr3NCl3.nscf.in > Sr3NCl3.nscf.out. (5) Run the bands file by using the command: bands.x < Sr3NCl3.bands.in > Sr3NCl3.bands.out and using plotband.x plot the bands fig in xmgrace. (6) Run the pdos file by using the command: projwfc.x < Sr3NCl3.pdos.in > Sr3NCl3.pdos.out. (7) Run the eps file by using the command: epsilon.x < Sr3NCl3.eps.in > Sr3NCl3.eps.out. (8) Run the jdos file by using the command: epsilon.x < Sr3NCl3.jdos.in > Sr3NCl3.jdos.out.

References

  1. Sharif A, Meo MS, Chowdhury MAF, Sohag K (2021) Role of solar energy in reducing ecological footprints: an empirical analysis. J Clean Prod. https://doi.org/10.1016/j.jclepro.2021.126028

    Article  Google Scholar 

  2. Kuddus A, Rahman MF, Ahmmed S et al (2019) Role of facile synthesized V2O5 as hole transport layer for CdS/CdTe heterojunction solar cell: validation of simulation using experimental data. Superlattices Microstruct 132:106168. https://doi.org/10.1016/j.spmi.2019.106168

    Article  CAS  Google Scholar 

  3. Cao D, Malakooti S, Kulkarni VN et al (2022) The effect of resin uptake on the flexural properties of compression molded sandwich composites. Wind Energy 25:71–93. https://doi.org/10.1002/we.2661

    Article  Google Scholar 

  4. Cao D, Malakooti S, Kulkarni VN et al (2021) Nanoindentation measurement of core–skin interphase viscoelastic properties in a sandwich glass composite. Mech Time Dependent Mater 25:353–363. https://doi.org/10.1007/s11043-020-09448-y

    Article  CAS  Google Scholar 

  5. Huang X, Ji D, Fuchs H et al (2020) Recent progress in organic phototransistors: semiconductor materials, device structures and optoelectronic applications. ChemPhotoChem 4:9–38. https://doi.org/10.1002/cptc.201900198

    Article  CAS  Google Scholar 

  6. Kelley TW, Baude PF, Gerlach C et al (2004) Recent progress in organic electronics: materials, devices, and processes. Chem Mater 16:4413–4422. https://doi.org/10.1021/cm049614j

    Article  CAS  Google Scholar 

  7. Wang H, Zeng Z, Xu P et al (2019) Recent progress in covalent organic framework thin films: fabrications, applications and perspectives. Chem Soc Rev 48:488–516. https://doi.org/10.1039/C8CS00376A

    Article  CAS  Google Scholar 

  8. Kojima A, Teshima K, Shirai Y, Miyasaka T (2009) Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J Am Chem Soc 131:6050–6051. https://doi.org/10.1021/ja809598r

    Article  CAS  Google Scholar 

  9. Feng HJ, Zhang Q (2021) Predicting efficiencies >25% A3MX3photovoltaic materials and Cu ion implantation modification. Appl Phys Lett DOI 10(1063/5):0039936

    Google Scholar 

  10. Rahman MF, Hossain J, Kuddus A et al (2020) A novel CdTe ink-assisted direct synthesis of CdTe thin films for the solution-processed CdTe solar cells. J Mater Sci 55:7715–7730. https://doi.org/10.1007/s10853-020-04578-7

    Article  CAS  Google Scholar 

  11. Moon MMA, Rahman MF, Kamruzzaman M et al (2021) Unveiling the prospect of a novel chemical route for synthesizing solution-processed CdS/CdTe thin-film solar cells. Energy Rep 7:1742–1756. https://doi.org/10.1016/j.egyr.2021.03.031

    Article  Google Scholar 

  12. Di J, Chang J, Liu S (2020) Recent progress of two-dimensional lead halide perovskite single crystals: crystal growth, physical properties, and device applications. EcoMat 2:1–24. https://doi.org/10.1002/eom2.12036

    Article  CAS  Google Scholar 

  13. Wang H, Wang X, Zhang H et al (2020) Organic−inorganic hybrid perovskites: Game-changing candidates for solar fuel production. Nano Energy 71:104647. https://doi.org/10.1016/j.nanoen.2020.104647

    Article  CAS  Google Scholar 

  14. Hossain MK, Rubel MHK, Toki GFI et al (2022) Effect of various electron and hole transport layers on the performance of CsPbI 3-based perovskite solar cells: a numerical investigation in DFT, SCAPS-1D, and wxAMPS frameworks. ACS Omega 7:43210–43230. https://doi.org/10.1021/acsomega.2c05912

    Article  CAS  Google Scholar 

  15. Hossain MK, Toki GFI, Alam I et al (2023) Numerical simulation and optimization of CsPbI3-based perovskite solar cell to enhance the power conversion efficiency. New J Chem 47:4801–4817. https://doi.org/10.1039/d2nj06206b

    Article  CAS  Google Scholar 

  16. Yin W-J, Shi T, Yan Y (2014) Unique properties of halide perovskites as possible origins of the superior solar cell performance. Adv Mater 26:4653–4658. https://doi.org/10.1002/adma.201306281

    Article  CAS  Google Scholar 

  17. Stranks SD, Eperon GE, Grancini G et al (2013) Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 342:341–344. https://doi.org/10.1126/science.1243982

    Article  CAS  Google Scholar 

  18. Zhang W, Eperon GE, Snaith HJ (2016) Metal halide perovskites for energy applications. Nat Energy 1:1–8

    Article  Google Scholar 

  19. Eperon GE, Stranks SD, Menelaou C et al (2014) Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells. Energy Environ Sci 7:982–988. https://doi.org/10.1039/c3ee43822h

    Article  CAS  Google Scholar 

  20. Hao F, Stoumpos CC, Cao DH et al (2014) Lead-free solid-state organic–inorganic halide perovskite solar cells. Nat Photonics 8:489–494. https://doi.org/10.1038/nphoton.2014.82

    Article  CAS  Google Scholar 

  21. Zhao YQ, Ma QR, Liu B et al (2018) Pressure-induced strong ferroelectric polarization in tetra-phase perovskite CsPbBr 3. Phys Chem Chem Phys 20:14718–14724. https://doi.org/10.1039/c8cp01338a

    Article  CAS  Google Scholar 

  22. Zhao YQ, Liu B, Yu ZL et al (2017) Tuning charge carrier types, superior mobility and absorption in lead-free perovskite CH3NH3GeI3: theoretical study. Electrochim Acta 247:891–898. https://doi.org/10.1016/j.electacta.2017.06.154

    Article  CAS  Google Scholar 

  23. Wang P, Guan J, Galeschuk DTK et al (2017) Pressure-induced polymorphic, optical, and electronic transitions of formamidinium lead iodide perovskite. J Phys Chem Lett 8:2119–2125. https://doi.org/10.1021/acs.jpclett.7b00665

    Article  CAS  Google Scholar 

  24. Nagaoka Y, Hills-Kimball K, Tan R et al (2017) Nanocube superlattices of cesium lead bromide perovskites and pressure-induced phase transformations at atomic and mesoscale levels. Adv Mater 29:1606666. https://doi.org/10.1002/adma.201606666

    Article  CAS  Google Scholar 

  25. Li Q, Li S, Wang K et al (2017) High-pressure study of perovskite-like organometal halide: band-gap narrowing and structural evolution of [NH3-(CH2)4-NH3]CuCl4. J Phys Chem Lett 8:500–506. https://doi.org/10.1021/acs.jpclett.6b02786

    Article  CAS  Google Scholar 

  26. Jaffe A, Lin Y, Mao WL, Karunadasa HI (2017) Pressure-induced metallization of the halide perovskite (CH3NH3)PbI3. J Am Chem Soc 139:4330–4333. https://doi.org/10.1021/jacs.7b01162

    Article  CAS  Google Scholar 

  27. Beimborn JC, Walther LR, Wilson KD, Weber JM (2020) Size-dependent pressure-response of the photoluminescence of CsPbBr3 nanocrystals. J Phys Chem Lett 11:1975–1980. https://doi.org/10.1021/acs.jpclett.0c00174

    Article  CAS  Google Scholar 

  28. Kong L, Liua G, Gong J et al (2016) Simultaneous band-gap narrowing and carrier-lifetime prolongation of organic-inorganic trihalide perovskites. Proc Natl Acad Sci USA 113:8910–8915. https://doi.org/10.1073/pnas.1609030113

    Article  CAS  Google Scholar 

  29. Brogan MA, Hughes RW, Smith RI, Gregory DH (2012) Structural studies of magnesium nitride fluorides by powder neutron diffraction. J Solid State Chem 185:213–218. https://doi.org/10.1016/j.jssc.2011.11.008

    Article  CAS  Google Scholar 

  30. Islam J, Hossain AKMA (2020) Semiconducting to metallic transition with outstanding optoelectronic properties of CsSnCl3 perovskite under pressure. Sci Rep 10:1–11. https://doi.org/10.1038/s41598-020-71223-3

    Article  CAS  Google Scholar 

  31. Liu D, Li Q, Jing H, Wu K (2019) Pressure-induced effects in the inorganic halide perovskite CsGeI3. RSC Adv 9:3279–3284. https://doi.org/10.1039/c8ra10251a

    Article  CAS  Google Scholar 

  32. Islam MR, Wang Z, Qu S et al (2021) The impact of spin–orbit coupling and the strain effect on monolayer tin carbide. J Comput Electron 20:151–160. https://doi.org/10.1007/s10825-020-01621-3

    Article  CAS  Google Scholar 

  33. Islam MR, Islam MS, Ferdous N et al (2019) Spin–orbit coupling effects on the electronic structure of two-dimensional silicon carbide. J Comput Electron. https://doi.org/10.1007/s10825-019-01326-2

    Article  Google Scholar 

  34. Pandey M, Jacobsen KW, Thygesen KS (2016) Band gap tuning and defect tolerance of atomically thin two-dimensional organic-inorganic halide perovskites. J Phys Chem Lett 7:4346–4352. https://doi.org/10.1021/acs.jpclett.6b01998

    Article  CAS  Google Scholar 

  35. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868. https://doi.org/10.1103/PhysRevLett.77.3865

    Article  CAS  Google Scholar 

  36. Smith JM, Jones SP, White LD (1977) Rapid communication. Gastroenterology 72:193. https://doi.org/10.1016/S0016-5085(77)80340-5

    Article  Google Scholar 

  37. Kresse G, Hafner J (1994) Norm-conserving and ultrasoft pseudopotentials for first-row and transition elements. J Phys Condens Matter 6:8245–8257. https://doi.org/10.1088/0953-8984/6/40/015

    Article  CAS  Google Scholar 

  38. Perdew JP, Zunger A (1981) Self-interaction correction to density-functional approximations for many-electron systems. Phys Rev B 23:5048–5079. https://doi.org/10.1103/PhysRevB.23.5048

    Article  CAS  Google Scholar 

  39. Clark SJ, Segall MD, Pickard CJ et al (2005) First principles methods using CASTEP. Zeitschrift fur Krist 220:567–570. https://doi.org/10.1524/zkri.220.5.567.65075

    Article  CAS  Google Scholar 

  40. Giannozzi P, Baroni S, Bonini N et al (2009) QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J Phys Condens Matter 21:395502. https://doi.org/10.1088/0953-8984/21/39/395502

    Article  Google Scholar 

  41. Islam R, Liu K, Wang Z et al (2022) Strain-induced electronic and optical properties of inorganic lead halide perovskites APbBr3 (A = Rb and Cs). Mater Today Commun 31:103305. https://doi.org/10.1016/j.mtcomm.2022.103305

    Article  CAS  Google Scholar 

  42. Giannozzi P, Andreussi O, Brumme T et al (2017) Advanced capabilities for materials modelling with Quantum ESPRESSO. J Phys Condens Matter 29:465901. https://doi.org/10.1088/1361-648X/aa8f79

    Article  CAS  Google Scholar 

  43. Islam MR, Mojumder MRH, Moshwan R et al (2022) Strain-driven optical, electronic, and mechanical properties of inorganic halide perovskite CsGeBr3. ECS J Solid State Sci Technol 11:033001. https://doi.org/10.1149/2162-8777/ac56c2

    Article  Google Scholar 

  44. Langhoff PW, Epstein ST, Karplus M (1972) Aspects of time-dependent perturbation theory. Rev Mod Phys 44:602–644. https://doi.org/10.1103/RevModPhys.44.602

    Article  CAS  Google Scholar 

  45. Karsch F, Patkós A, Petreczky P (1997) Screened perturbation theory. Phys Lett B 401:69–73. https://doi.org/10.1016/S0370-2693(97)00392-4

    Article  CAS  Google Scholar 

  46. Feng HJ, Wu K, Deng ZY (2020) Predicting inorganic photovoltaic materials with efficiencies >26% via structure-relevant machine learning and density functional calculations. Cell Rep Phys Sci 1:100179. https://doi.org/10.1016/j.xcrp.2020.100179

    Article  Google Scholar 

  47. Rubel MHK, Hossain MA, Hossain MK et al (2022) First-principles calculations to investigate structural, elastic, electronic, thermodynamic, and thermoelectric properties of CaPd3B4O12 (B = Ti, V) perovskites. Results Phys 42:105977. https://doi.org/10.1016/j.rinp.2022.105977

    Article  Google Scholar 

  48. Hossain MK, Toki GFI, Kuddus A et al (2023) An extensive study on multiple ETL and HTL layers to design and simulation of high-performance lead-free CsSnCl3-based perovskite solar cells. Sci Rep 13:1–24. https://doi.org/10.1038/s41598-023-28506-2

    Article  CAS  Google Scholar 

  49. Xie Z, Hui L, Wang J et al (2018) Electronic and optical properties of monolayer black phosphorus induced by bi-axial strain. Comput Mater Sci 144:304–314. https://doi.org/10.1016/j.commatsci.2017.12.026

    Article  CAS  Google Scholar 

  50. Fadla MA, Bentria B, Dahame T, Benghia A (2020) First-principles investigation on the stability and material properties of all-inorganic cesium lead iodide perovskites CsPbI3 polymorphs. Phys B Condens Matter 585:412118. https://doi.org/10.1016/j.physb.2020.412118

    Article  CAS  Google Scholar 

  51. Jong UG, Yu CJ, Kim YS et al (2018) First-principles study on the material properties of the inorganic perovskite Rb1-xCsxPbI3 for solar cell applications. Phys Rev B 98:32–39. https://doi.org/10.1103/PhysRevB.98.125116

    Article  Google Scholar 

  52. Islam MN, Hadi MA, Podder J (2019) Influence of Ni doping in a lead-halide and a lead-free halide perovskites for optoelectronic applications. AIP Adv 9:1–9. https://doi.org/10.1063/1.5132985

    Article  CAS  Google Scholar 

  53. Noor NA, Mahmood Q, Rashid M et al (2018) The pressure-induced mechanical and optoelectronic behavior of cubic perovskite PbSnO3 via ab-initio investigations. Ceram Int 44:13750–13756. https://doi.org/10.1016/j.ceramint.2018.04.217

    Article  CAS  Google Scholar 

  54. Jing H, Sa R, Xu G (2019) Tuning electronic and optical properties of CsPbI3 by applying strain: a first-principles theoretical study. Chem Phys Lett 732:136642. https://doi.org/10.1016/j.cplett.2019.136642

    Article  CAS  Google Scholar 

  55. Maqbool M, Rehman G, Ali L et al (2017) Structural, electronic and optical properties of CsPbX3(X=Cl, Br, I) for energy storage and hybrid solar cell applications. J Alloys Compd 705:828–839. https://doi.org/10.1016/j.jallcom.2017.02.147

    Article  CAS  Google Scholar 

  56. Nayak AP, Bhattacharyya S, Zhu J et al (2014) Pressure-induced semiconducting to metallic transition in multilayered molybdenum disulphide. Nat Commun 5:3731. https://doi.org/10.1038/ncomms4731

    Article  CAS  Google Scholar 

  57. Bhattacharyya S, Singh AK (2012) Semiconductor-metal transition in semiconducting bilayer sheets of transition-metal dichalcogenides. Phys Rev B Condens Matter Mater Phys 86:1–7. https://doi.org/10.1103/PhysRevB.86.075454

    Article  CAS  Google Scholar 

  58. Nguyen HTT, Vi VTT, Vu TV et al (2020) Spin-orbit coupling effect on electronic, optical, and thermoelectric properties of Janus Ga2SSe. RSC Adv 10:44785–44792. https://doi.org/10.1039/d0ra08279a

    Article  CAS  Google Scholar 

  59. Ehrler B, Alarcón-Lladó E, Tabernig SW et al (2020) Photovoltaics reaching for the Shockley–Queisser limit. ACS Energy Lett 5:3029–3033. https://doi.org/10.1021/acsenergylett.0c01790

    Article  CAS  Google Scholar 

  60. Nayak AP, Pandey T, Voiry D et al (2015) Pressure-dependent optical and vibrational properties of monolayer molybdenum disulfide. Nano Lett 15:346–353. https://doi.org/10.1021/nl5036397

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors extend their sincere appreciation to the Researchers Supported by the Princess Nourah bint Abdulrahman University Researchers Supporting Project number (PNURSP2023R29), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Contributions

MFR and MRI involved in conceptualization, methodology, software, validation, formal analysis, visualization, investigation, data curation, supervision, writing—original draft, and review and editing. MHR, MKH, AG, MSI, MMI, and MH-O-R involved in methodology, software, validation, formal analysis, visualization, investigation, data curation, writing—original draft, and review and editing, HA and Q involved in methodology, software, validation, formal analysis, writing—original draft, and review and editing.

Corresponding authors

Correspondence to Md. Ferdous Rahman or Md. Rasidul Islam.

Ethics declarations

Conflict of interest

All the authors have no conflict of interest.

Ethical approval

All the authors declare that the manuscript does not have studies on human subjects, human data or tissue, or animals.

Additional information

Handling Editor: Pedro Camargo.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahman, M.F., Rahman, M.H., Islam, M.R. et al. The optical and electronic properties of inorganic halide perovskite Sr3NCl3 under applied biaxial strain. J Mater Sci 58, 13100–13117 (2023). https://doi.org/10.1007/s10853-023-08825-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-023-08825-5

Navigation