Skip to main content
Log in

Temperature-Sensitive Polymer-Based Iron Complexes: Construction, Characterization and Properties in Dye Degradation by Activated H2O2

  • Research
  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

The preparation of polymer-metal complex is an effective way to achieve the bifunctionality of polymer and metal. In this study, temperature-sensitive polymer was synthesized from triethylene glycol methyl ether methacrylate (MEO2MA) and methacrylic acid N-hydroxysuccinimide ester (NMS) monomers via reversible addition-fragmentation chain transfer (RAFT) polymerization. 6-Aminohexanoic acid was introduced into the temperature-sensitive polymer using an activated ester strategy to obtain branched carboxyl-containing polymers. The carboxyl group in the polymer was coordinated with Fe(III), resulting in temperature-sensitive polymer-based iron complexes. The obtained iron complexes were used as homogeneous catalysts in the Fenton oxidation. Where, 97% and 96% decolorization of rhodamine B (RhB) and methylene blue (MB) could be achieved within 2 h for P(COOH10-co-MEO2MA41)-Fe3+, and the catalytic activities increased with the increase of the COOH content of polymer. In addition, the recycling of the catalyst can be achieved by the heating-centrifugal precipitation method using the temperature-sensitive nature of the polymer.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. L. Liu, Y. Li, S. Fan, Processes 7, 891–911 (2019)

    Article  CAS  Google Scholar 

  2. S. Khan, M. Naushad, M. Govarthanan, J. Iqbal, S.M. Alfadul, Environ. Res. 207, 112609–112625 (2022)

    Article  CAS  PubMed  Google Scholar 

  3. X. Zhao, Y. Su, S. Li, Y. Bi, X. Han, J. Environ. Sci. 73, 47–57 (2018)

    Article  CAS  Google Scholar 

  4. J.H. Mo, Y.H. Lee, J. Kim, J.Y. Jeong, J. Jegal, Dyes Pigm. 76, 429–434 (2008)

    Article  CAS  Google Scholar 

  5. S. Xie, J. Du, X. Huang, A. Gu, S. Fang, R. Liu, D. Zou, J. Lin, M. Xie, S. Zhao, W. Ye, ACS ES&T Water. 519–528 (2022)

  6. Y. Kang, J. Jang, S. Kim, J. Lim, Y. Lee, I.S. Kim, ACS Appl. Mater. Interface 12, 36148–36158 (2020)

    Article  Google Scholar 

  7. M. Chethana, L.G. Sorokhaibam, V.M. Bhandari, S. Raja, V.V. Ranade, ACS Sustain. Chem. Eng. 4, 2495–2507 (2016)

    Article  CAS  Google Scholar 

  8. J. Xu, W. He, Y. Li, D. Zhang, J. Zhou, C. Zhang, Y. Li, R. Wang, X. Su, RSC Adv. 6, 102703–102709 (2016)

    Article  CAS  Google Scholar 

  9. W. Jiang, Z. Yuan, J. Bi, L. Sun, J. Clean. Prod. 18, 1696–1702 (2010)

    Article  Google Scholar 

  10. L. Zhou, K. Xu, X. Cheng, Y. Xu, Q. Jia, J. Clean. Prod. 141, 721–727 (2017)

    Article  Google Scholar 

  11. S. Zhu, J. Xu, W. Yu, Y. Kuang, B. Wang, G. Ying, J. Li, Z. Cheng, J. Li, K. Chen, Ind. Crop Prod. 187, 115314–115325 (2022)

    Article  CAS  Google Scholar 

  12. Y. Wang, H. Zhao, J. Gao, G. Zhao, Y. Zhang, Y. Zhang, J. Phys. Chem. C 116, 7457–7463 (2012)

    Article  CAS  Google Scholar 

  13. J. Cai, D. Zhang, W. Xu, W.P. Ding, Z.Z. Zhu, J.R. He, S.Y. Cheng, J. Agric. Food Chem. 68, 9725–9732 (2020)

    Article  CAS  PubMed  Google Scholar 

  14. M. Tang, R. Xu, Y. Gong, H. Zhang, J. He, P. Wu, C. Liu, W. Jiang, Ind. Eng. Chem. Res. 60, 17520–17533 (2021)

    Article  CAS  Google Scholar 

  15. I. Durruty, D. Fasce, J.F. Gonzalez, E.A. Wolski, Bioproc. Biosyst Eng. 38, 1019–1031 (2015)

    Article  CAS  Google Scholar 

  16. C. Wang, K. Song, Y. Feng, D. Yin, J. Ouyang, B. Liu, X. Cao, L. Zhang, Y. Han, M. Wu, RSC Adv. 4, 39118–39125 (2014)

    Article  CAS  Google Scholar 

  17. S. Varjani, P. Rakholiya, H.Y. Ng, S. You, J.A. Teixeira, Bioresource Technol. 314, 123728–123771 (2020)

    Article  CAS  Google Scholar 

  18. D. Vaidehi, V. Bhuvaneshwari, D. Bharathi, B.P. Sheetal, Mater. Res. Express 5, 109047–109074 (2018)

    Article  Google Scholar 

  19. S. Moosavi, R.Y.M. Li, C.W. Lai, Y. Yusof, S. Gan, O. Akbarzadeh, Z.Z. Chowhury, X.G. Yue, M.R. Johan, Nanomaterials 10, 2360–2375 (2020)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. D. Bhatia, N.R. Sharma, J. Singh, R.S. Kanwar, Crit. Rev. Environ. Sci. Technol. 47, 1836–1876 (2017)

    Article  CAS  Google Scholar 

  21. M. Pera-Titus, V. García-Molina, M.A. Baños, J. Giménez, S. Esplugas, Appl. Catal. B 47, 219–256 (2004)

    Article  CAS  Google Scholar 

  22. K. Nakata, A. Fujishima, J. Photochem. Photobiol. C 13, 169–189 (2012)

    Article  CAS  Google Scholar 

  23. C. Gomes da Silva, J.L. Faria, J. Photochem. Photobiol. A 155, 133–143 (2002)

    Article  Google Scholar 

  24. V. Shah, Appl. Catal. B 46, 287–292 (2003)

    Article  CAS  Google Scholar 

  25. I. Konstantinou, Appl. Catal. B 42, 319–335 (2003)

    Article  CAS  Google Scholar 

  26. T. Sauer, G. Cesconeto Neto, H.J. José, R.F.P.M. Moreira, J. Photochem. Photobiol. A 149, 147–154 (2002)

    Article  CAS  Google Scholar 

  27. T. Zhou, T.-T. Lim, S.-S. Chin, A.G. Fane, Chem. Eng. J. 166, 932–939 (2011)

    Article  CAS  Google Scholar 

  28. P. Westerhoff, H. Moon, D. Minakata, J. Crittenden Water Res. 43, 3992–3998 (2009)

    Article  CAS  Google Scholar 

  29. S. Shin, H. Yoon, J. Jang, Catal. Commun. 10, 178–182 (2008)

    Article  CAS  Google Scholar 

  30. F. Ji, C. Li, J. Zhang, L. Deng, J. Hazard. Mater 186, 1979–1984 (2011)

    Article  CAS  PubMed  Google Scholar 

  31. A. Bermejo-López, M. Raeder, E. Martínez-Castro, B. Martín-Matute, Chem. 8, 3302–3323 (2022)

    Article  Google Scholar 

  32. J. Wang, H. Li, D. Zhang, J. Bai, Chem. Res. Chin. Univ. 35, 256–260 (2019)

    Article  CAS  Google Scholar 

  33. A. Vasishta, H.S. Pawar, ACS Omega 8, 1047–1059 (2023)

    Article  CAS  PubMed  Google Scholar 

  34. T. Chen, Z. Xu, L. Zhou, J. Qiu, M. Wang, J. Wang, Mol. Catal. 474, 110422–110428 (2019)

    Article  CAS  Google Scholar 

  35. T. Chen, Z. Xu, L. Zhou, L. Hua, S. Zhang, J. Wang, Tetrahedron Lett. 60, 419–422 (2019)

    Article  CAS  Google Scholar 

  36. M. Wang, Z. Xu, Y. Shi, F. Cai, J. Qiu, G. Yang, Z. Hua, T. Chen, J. Org. Chem. 86, 8027–8035 (2021)

    Article  CAS  PubMed  Google Scholar 

  37. P. Cotanda, A. Lu, J.P. Patterson, N. Pet zetakis, R.K. O’Reilly, Macromolecules 45, 2377–2384 (2012)

    Article  CAS  Google Scholar 

  38. H.A. Zayas, A. Lu, D. Valade, F. Amir, Z. Jia, R.K. O’Reilly, M.J. Monteiro, ACS Macro Lett. 2, 327–331 (2013)

    Article  CAS  PubMed  Google Scholar 

  39. Y.W. Bae, J. Kim, S.H. Ju, K. Shin, I.W. Cheong, ACS Appl. Polym. Mater. 1, 130–135 (2019)

    Article  CAS  Google Scholar 

  40. L.-L. Shen, X.-J. Cao, Biochem. Eng. J. 33, 66–71 (2007)

    Article  CAS  Google Scholar 

  41. Y. Zhang, R. Tan, G. Zhao, X. Luo, C. Xing, D. Yin, J. Catal. 335, 62–71 (2016)

    Article  CAS  Google Scholar 

  42. J. Lopez-Cabrelles, M. Gimenez-Marques, G. Minguez Espallargas, E. Coronado, Inorg. Chem. 54, 10490–10496 (2015)

    Article  CAS  PubMed  Google Scholar 

  43. X.-L. Wang, T.-J. Li, A.-X. Tian, N. Li, Y. Yang, Y.-L. Ning, X. Hou, CrystEngComm 17, 3257–3267 (2015)

    Article  CAS  Google Scholar 

  44. C. Zhang, Z.-Y. Liu, N. Liu, H. Zhao, E.-C. Yang, X.-J. Zhao, Dalton Trans. 45, 11864–11875 (2016)

    Article  CAS  PubMed  Google Scholar 

  45. X.-H. Chang, Y. Zhao, M.-L. Han, L.-F. Ma, L.-Y. Wang, CrystEngComm 16, 6417–6424 (2014)

    Article  CAS  Google Scholar 

  46. H. Woo, B. Gil, J. Kim, K. Park, A.J. Yun, J. Kim, S. Nam, B. Park, Batteries Supercaps 3, 1287–1295 (2020)

    Article  CAS  Google Scholar 

  47. C.-N. Lü, M.-M. Chen, W.-H. Zhang, D.-X. Li, M. Dai, J.-P. Lang, CrystEngComm 17, 1935–1943 (2015)

    Article  Google Scholar 

  48. R. Shunmugam, G.N. Tew, J. Polym. Sci. Polym. Chem. 43, 5831–5843 (2005)

    Article  CAS  Google Scholar 

  49. Y. Cao, X.X. Zhu, J. Luo, H. Liu, Macromolecules 40, 6481–6488 (2007)

    Article  CAS  Google Scholar 

  50. J. Sun, C. Wang, Y.-L. Hong, Z.-W. Tan, C.-M. Liu, ACS Appl. Polym. Mater. 3, 3214–3226 (2021)

    Article  CAS  Google Scholar 

  51. T. Chen, L. Hua, S. Zhang, Z. Xu, L. Zhou, J. Wang, Eur. Polym. J. 109, 473–482 (2018)

    Article  CAS  Google Scholar 

  52. N.M. El-Sawy, Z.I. Ali, J. Appl. Polym. Sci. 103, 4065–4071 (2007)

    Article  CAS  Google Scholar 

  53. S. Karmakar, A. Chakravorty, Inorg. Chem. 35, 1935–1939 (1996)

    Article  CAS  Google Scholar 

Download references

Funding

The work was supported by the National Natural Science Foundation of China (52273216), the Zhejiang Provincial Key Research and Development Program (2023C01094) and the Leading Talents of the Zhejiang Provincial 10000 Talents Plan for Scientific and Technological Innovation (2020R52023).

Author information

Authors and Affiliations

Authors

Contributions

XZ: conducting the experiments, and writing the first draft. XW: participating in some experiments and data analysis. GZ and HY: methodology, project administration. DQ: funding acquisition and co-supervision of the students. HD: planning the experimental route and revision of the draft. TC: funding acquisition, design of the catalyst and revision of the final manuscript. All authors agreed with the final version of the submitted manuscript.

Corresponding authors

Correspondence to Hangjun Deng or Tao Chen.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 294 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, X., Wang, X., Zhou, G. et al. Temperature-Sensitive Polymer-Based Iron Complexes: Construction, Characterization and Properties in Dye Degradation by Activated H2O2. J Inorg Organomet Polym 33, 3237–3246 (2023). https://doi.org/10.1007/s10904-023-02752-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-023-02752-3

Keywords

Navigation