Skip to main content
Log in

Detailed Investigation of Structural, Morphology, Magnetic, Electical and Optical Properties of the Half-Doped PerovsikteNd0.5Ba0.5FeO3

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

The highly crystallized orthoferrite of formula Nd0.5Ba0.5FeO3 (NBFO) was synthesized by the sol-gel method. The phase of our compound and the average particle size were studied using X-ray diffraction (XRD) and scanning electron microscopy (SEM) methods. The X-ray diffraction patterns showed that the NBFO sample crystallize in the cubic structure with Pm-3 m space group. The average crystallite size value determined by Williamson-Hall (W-H), Halder–Wagner (H–W) formula and using the method of Debye-Scherer is in the range of 60 nm, 56 nm and 55 nm, respectively. In the other hand, SEM result shows an overall average particle size of about 251 nm. Obviously, the particle sizes observed by SEM are larger than those calculated by XRD, which indicates that each particle observed by SEM consists of several crystallized grains. Moreover, the antiferromagnetic (AFM)–paramagnetic (PM) phase transition has been confirmed by magnetic measurements at 0.05 T applied field. This AFM–PM transition has been observed for the Neel temperature TN = 49 K. Frequency and temperature dependencies of capacitance (C−f/T) and conductance (G−f/T) of the sample were investigated in the frequency and temperature ranges of 40 Hz–100 MHz and 220–400 K, respectively. On the other hand, the optical characteristics of this polycrystalline were analyzed by UV–Vis absorption spectroscopy. By investigating the UV absorption and reflectance measurements, we identify the direct optical band gap close to 4.75 eV, which confirms that our sample is a direct gap semiconductor. In addition, the Urbach energy, the optical extinction coefficient and the refractive index were determined from the absorbance and reflectance measurements. We have also shown that the refractive index n follows the Cauchy law in the area where the absorbance is maximized. On the other hand, the dispersion parameters E0 and Ed of this compound have been calculated based to the Wemple-Didomenico model. Dielectric investigation indicates that the dissipation factor tan δ has a very low value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. M. Nasri, J. Khelif, H.A. Robei, E. Dhahri, M.L. Bouazizi, The impact of disorder on the disappearance of met magnetic behavior and enhancement of temperature coefficient of resistivity for (La1−xNdx)2/3(Ca1−ySry)1/3MnO3 Ceramics. J. Low Temp. Phys. 202, 175–184 (2021)

    Article  CAS  Google Scholar 

  2. M. Nasri, E. Dhahri, E.K. Hlil, Estimation of the magnetic entropy change by means of Landau theory and phenomenological model in La0.6 Ca0.2 Sr0.2MnO3/Sb2O3 ceramic composites. J. Ph. Transit. 91, 573–585 (2017)

    Article  Google Scholar 

  3. S. Cao, H. Zhao, B. Kang, J. Zhang, W. Ren, Temperature induced spin switching in SmFeO3single crystal. J. Sci. Rep. 4, 05960 (2014)

    Article  CAS  Google Scholar 

  4. Y. Tokunaga, S. Iguchi, T. Arima, Y. Tokura, Magnetic-field-induced ferroelectric state in DyFeO3. J. Phys. Rev. Lett. 101, 97205 (2008)

    Article  CAS  Google Scholar 

  5. I. Ahmad, M.J. Akhtar, M. Siddique, M. Iqbal, M.M. Hasan, J. Ceram. Int. 39, 8901–8909 (2013)

    Article  CAS  Google Scholar 

  6. I. Dzyaloshinsky, A thermodynamics theory of “weak” ferromagnetism of antiferromagnetics. J. Phys. Chem. Solid. 4, 241–255 (1958)

    Article  CAS  Google Scholar 

  7. T. Moriya, New mechanism of anisotropic superexchange interaction. J. Phys. Rev. Lett. 4, 228 (1960)

    Article  CAS  Google Scholar 

  8. Y.B. Bazaliy, L.T. Tsymbal, G.N. Kakaze, A.I. Izotov, P.E. Wigen, The role of 4f-electron on spin reorientation transition of NdFeO3: A first principle study. J. Phys. Rev. B. 69, 104429 (2004)

    Article  Google Scholar 

  9. A.T. Nguyen, I.Y. Mittova, O.V. Almjasheva, S.A. Kirillova, V.V. Gusarov, Influence of the preparation conditions on the size and morphology of nanocrystalline lanthanum orthoferrite. J. Glass. Phys. Chem. 34, 756–761 (2008)

    Article  Google Scholar 

  10. J.H. Piao, K.N. Sun, N.Q. Zhang, X.B. Chen, S. Xu, D.R. Zhou, Preparation and Characterization of Pr1−xSrxFeO3 cathode material for intermediate temperature solid oxide fuel cells. J. Power Sour. 172, 633 (2007)

    Article  CAS  Google Scholar 

  11. T. Okiba, T. Sato, F. Fujishiro, E. Niwa, T. Hashimoto, Preparation of Ba1−xLaxFeO3−δ (x=0.1- 0.6) with cubic perovskite phase and random distribution of oxide ion vacancy and their electrical conduction property and thermal expansion behavior. J. Sol. State Ion. 320, 76–83 (2018)

    Article  CAS  Google Scholar 

  12. R.A. Budiman, S. Hashimoto, Y. Fujimaki, T. Nakamura, K. Yashiro, K. Amezawa, T. Kawada, Evaluation of electrochemical properties of LaNi0.6Fe0.4O3-δ- Ce0.9Gd0.1O1.95 composite as air electrode for SOFC. J. Sol. State Ion. 332, 70–76 (2019)

    Article  CAS  Google Scholar 

  13. H.Y. Liu, K.Y. Zhu, Y. Liu, W.P. Li, L.L. Cai, X.F. Zhu, M.J. Cheng, W.S. Yang, Structure and electrochemical properties of cobalt-free perovskite cathode materials for intermediate-temperature solid oxide fuel cells. J. Electrochim. Acta. 279, 224 (2018)

    Article  CAS  Google Scholar 

  14. X.B. Mao, T. Yu, G.L. Ma, Performance of cobalt-free double-perovskite NdBaFe2- xMnxO5+δ cathode materials for proton-conducting IT-SOFC. J. Alloy. Compd. 637, 286 (2015)

    Article  CAS  Google Scholar 

  15. P.V. Serna, C.G. Campos, F.S.D. Jesus, A.M.B. Miro, J.A.J. Loran, Longwell, Mechanosynthesis, crystalstructure and magnetic characterization of neodymium orthoferrite. J. Mater. Res. 19, 389–393 (2016)

    Article  CAS  Google Scholar 

  16. V. Zharvan, Y.N. Kamaruddin, S. Samnur, E.H. Sujiono, The ect of molar ratio on crystal structure and morphology of Nd1+xFeO3 (x = 0.1, 0.2 and 0.3) oxide alloy material synthesized by solid state reaction method. J. Mater. Sci. Eng. 202, 012072 (2017)

    Google Scholar 

  17. M.D. Luu, N.N. Dao, D.V. Nguyen, N.C. Pham, T.N. Vu, T.D. Doan, A new perovskite-type NdFeO3 adsorbent: synthesis, characterization, and As (V) adsorption. J. Adv. Nat. Sci. Nanosci. Nanotechnol. 7, 15–25 (2016)

    Google Scholar 

  18. Y. Mostafa, S.Z. Samaneh, K.-M. Mozhgan, Synthesis and characterization of nano-structured perovskite type neodymium orthoferrite NdFeO3. J. Curr. Chem. Lett. 6, 23–30 (2017)

    Google Scholar 

  19. K.-M. Mozhgan, M. Noroozifar, M. Yousefi, S. Jahani, Chemical synthesis and characterization of perovskite NdFeO3 nanocrystals via a co-precipitation method. Int. J. Nanosci. Nanotechnol. 9, 7–14 (2013)

    Google Scholar 

  20. A. Panchwanee, V.R. Reddy, A. Gupta, Electrical and Mössbauer study of polycrystalline PrFeO3. J. Phys. Conf. Ser. 755, 012033 (2016)

    Article  Google Scholar 

  21. S.K. Megarajan, S. Rayalu, M. Nishibori, N. Labhsetwar, Improved catalytic activity of PrMO3 (M = Co and Fe) perovskite: synthesis of thermally stable nanoparticles by a novel hydrothermal method. New. J. Chem. 39, 2342–2348 (2015)

    Article  CAS  Google Scholar 

  22. S. Husaina, A. Somvanshi, S. Manzoor, A. Naima Zarrin, Comparative study of NdFeO3and NdFe0.7 Zn0.3O3: structural modifications, surface morphology and optical properties. J. AIP Conf. Proc. 2115, 030125 (2019)

    Article  Google Scholar 

  23. Y. Supriyadi, D. Triyono, S.K. Lukmana, Structural and optical properties of La1-xPbxFe0.5Ti0.5O3 (x = 0.1, 0.2, and 0.3) perovskite material prepared by Sol-gel method.J. Mater. Sci. Eng. 763, 012063 (2020)

    CAS  Google Scholar 

  24. R. Mguedla, A. Ben Jazia Kharrat, O. Taktak, H. Souissi, S. Kammoun, K. Khirouni, W. Boujelben, Experimental and theoretical investigations on optical properties of multiferroic PrCrO3 ortho-chromite compound. J. Opt. Mater. 101, 109742 (2020)

    Article  CAS  Google Scholar 

  25. K. Souifi, M. Nasri, S. Hcini, B. Alzahrani, M. Lamjed Bouazizi, E. Dhahri, E.K. Hlil, J. Khelifi, Synthesis, structural and magnetic behavior and theoretical approach to study the magnetic and magnetocaloric properties of the half-doped perovskite Nd0.5Ba0.5CoO3. J. Mater. Sci. Mater. Electron. 32, 15291–15306 (2021)

    Article  CAS  Google Scholar 

  26. O. Rejaiba, M. Nasri, B. Alzahrani, M.L. Bouazizi, E.K. Hlil, J. Khelifi, K. Khirouni, E. Dhahri, J. Mater. Sci. 56, 16044–16058 (2021)

    Article  CAS  Google Scholar 

  27. M. Nasri, C. Henchiri, R. Dhahri, J. Khelifi, H. Rahmouni, E. Dhahri, L.H. Omari, A. Tozri, M.R. Berberf, Structural, dielectric, electrical and modulus spectroscopic characteristics of CoFeCuO4 spinel ferrite nanoparticles. Mater. Sci. Eng. B. 272, 11533 (2021)

    Article  Google Scholar 

  28. S. Nasri, A.L. Ben Hafsia, M. Tabellout, M. Megdiche, Complex impedance, dielectric properties and electrical conduction mechanism of La0.5Ba0.5FeO3-δ perovskite oxides. J. RSC Adv. 80, 2046–2069 (2016)

    Google Scholar 

  29. J. Massoudi, M. Smari, K. Nouri, E. Dhahri, K. Khirouni, S. Bertaina, L. Bessaisc, E.K. Hlilf, Magnetic and spectroscopic properties of Ni–Zn– Al ferrite spinel: from the nanoscale to microscale. J. RSC Adv. 10, 34556 (2020)

    Article  PubMed  CAS  Google Scholar 

  30. K. Krezhova, S. Kovacheva, D. Kovachevab, E. Svabc, G. Andred, F. Porcherd, Neutron diffraction investigation of Pb0.5La0.5FeO3. J. AIP Conf. Proc. 1203, 205–210 (2010)

    Article  Google Scholar 

  31. S. Acharya, P.K. Chakrabarti, Some interesting observations on the magnetic and electric properties of Al3C doped lanthanum orthoferrite (La0.5Al0.5FeO3). J. Sol. State Commun. 150, 1234–1237 (2010)

    Article  CAS  Google Scholar 

  32. O. Rejaiba, F. Alejandro, B. de Cal, A. Matoussi, A comprehensive study on the interface states in the ECR-PECVD SiO2/p-SiMOS structures analyzed by different method.J. Phys. E Low-dimens. Syst. Nanostruct. 109, 84–92 (2019)

    Article  CAS  Google Scholar 

  33. X. Wu, H.L. Ebans, E.S. Yang, Negative capacitance at metal-semiconductor interfaces. J. Appl. Phys. 68, 2845–2848 (1990)

    Article  CAS  Google Scholar 

  34. M. Nasri, O. Rejaiba, M.A. Raihane Charguia, H.A. Wederni, M.L. Robei, K. Bouazizi, J.K. Khirouni, J. Low Temp. Phys. 206, 250–268 (2022)

    Article  CAS  Google Scholar 

  35. G.B. Parravicini, A. Stella, M.C. Ungureanu, R. Kofman, Low-frequency negative capacitance effect in systems of metallic nanoparticles embedded in dielectric matrix. J. Appl. Phys. Lett. 85, 302–304 (2004)

    Article  CAS  Google Scholar 

  36. E.K. Abdel-Khalek, H.MMohamed., Synthesis, structural and magnetic properties of La1-xCaxFeO3 prepared by the co-precipitation method. Hyperfine Interact. 222, 57–67 (2013)

    Article  CAS  Google Scholar 

  37. S. Li, L. Jing, W. Fu, L. Yang, B. Xin, H. Fu, Photoinduced Charge Property of NanosizedPerovskite-Type LaFeO3 and its Relationships with Photocatalytic Activity Under Visible Irradiation. J. Mater. Res. Bull. 42, 203–212 (2007)

    Article  CAS  Google Scholar 

  38. E. Omari, M. Omari, Cu-doped GdFeO3 perovskites as electrocatalysts for the oxygen evolution reaction in alkaline media. Int. J. Hydrog. Energ. 44, 28769–28779 (2019)

    Article  CAS  Google Scholar 

  39. J. Sheikh, S.A. Acharya, U.P. Deshpande, Ce-doping effect on modulation of spin-exchange interaction and dielectric behavior of nanostructured LaFeO3 orthoferrites. J. Mater. Chem. Phys. 242, 122457 (2020)

    Article  CAS  Google Scholar 

  40. S. Husain, A.O.A. Keelani, W. Khan, Influence of Mn substitution on morphological, thermal and optical properties of nanocrystalline GdFeO3 orthoferrite. J. Nano-Struct. Nano-Object. 15, 17–27 (2018)

    Article  CAS  Google Scholar 

  41. N. Alhokbany, S. Almotairi, J. Ahmed, S.I. Al-Saeedi, T. Ahamad, S.M. Alshehri, Investigation of structural and electrical properties of synthesized Sr-doped lanthanum cobaltite (La1-xSrxCoO3) perovskite oxide. J. King Saud. Univ. Sci. 33, 101419 (2021)

    Article  Google Scholar 

  42. R. Kalthoum, M.B. Bechir, A.B. Rhaiem, CH3NH3CdCl3: A promising new lead-free hybrid organic–inorganic perovskite for photovoltaic applications. J. Phys. E. 124, 114235 (2020)

    Article  CAS  Google Scholar 

  43. A. Escobedo-Morales, I.I. Ruiz-L opez, M. deLRuiz-Peralta, L. Tepech-Carrillo, M.S. anchez-Cant u, J.E. Moreno-Orea, Automated method for the determination of the band gap energy of pure and mixed powder samples using diffuse reflectance spectroscopy. J. Heliyon. 5, 01505 (2019)

    Google Scholar 

  44. A. Somvanshi, S. Husain, S. Manzoor, N. Zarrin, W. Khan, Structure of nanocrystalline Nd0.5R0.5FeO3 (R=La, Pr, and Sm) intercorrelated with optical, magnetic and thermal properties. J. Alloy. Compd. 806, 1250–1259 (2019)

    Article  CAS  Google Scholar 

  45. M. Naseem Siddique, M. Faizan, P. Sk Riyajuddin, S.A. Tripathi, K. Ghosh, Intrinsic structural distortion assisted optical and magnetic properties of orthorhombic rare-earth perovskite La1-xEuxCrO3: Effect of t-e hybridization. J. Alloy. Compd. 850, 156748 (2021)

    Article  Google Scholar 

  46. Z.J.O.A. Matoussi, F. Fabbri, F. Rossi, G. Salviati, Optical and structural properties of ZnMgO ceramic Materials. J. Appl. Phys. A. 116, 1501–1509 (2014)

    Article  Google Scholar 

  47. A. Bouzidi, I.S. Yahia, W. Jilani, S.M. El-Bashir, S. AlFaify, H. Algarni, H. Guermazi, Electronic conduction mechanism and optical spectroscopy of Indigo carmine as novel organic semiconductors. J. Opt. Quant. Electron. 50, 176 (2018)

    Article  Google Scholar 

  48. R. Lefi, F.B. Naser, H. Guermazi, Structural Optical properties and characterization of (C2H5NH3)2CdCl4,(C2H5NH3)2CuCl4 and (C2H5NH3)2Cd0.5Cu0.5Cl4 compounds. J. Alloy. Compd. 696, 1244–1254 (2016)

    Article  Google Scholar 

  49. N. Tounsi, A. Barhoumi, F.C. Akkari, M. Kanzari, H. Geurmazi, S. Guermazi, Structural and optical characterization of copper oxide composite thin films elaborated by GLAD technique. J. Vaccum. 7, 1 (2015)

    Google Scholar 

  50. Y. Janbutrach, S. Hunpratub, E. Swatsitang, Ferromagnetism and optical properties of La1−xAlxFeO3 nanopowders. J. Nanoscale Res. Lett. 9, 498 (2014)

    Article  Google Scholar 

  51. O. Rejaiba, K. Khirouni, M. Houcine Dhaou, B. Alzahrani, M. Lamjed Bouazizi, J. Khelifi, Investigation Study of Optical and Dielectric parameters of La0.57Nd0.1Sr0.13Ag0.2MnO3 perovskite for optoelectronic application. Opt. Quantum. Electron. 54, 1 (2022)

    Article  Google Scholar 

Download references

Funding

The authors extend their appreciation to the Deputyship for Research and Innovation, Ministry of Education in Saudi Arabia for funding this research work through the project number 2021/01/18109.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omar Rejaiba.

Ethics declarations

Conflict of interest

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Souifi, K., Rejaiba, O., Amorri, O. et al. Detailed Investigation of Structural, Morphology, Magnetic, Electical and Optical Properties of the Half-Doped PerovsikteNd0.5Ba0.5FeO3. J Inorg Organomet Polym 32, 4515–4531 (2022). https://doi.org/10.1007/s10904-022-02451-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-022-02451-5

Keywords

Navigation