Skip to main content
Log in

A Study on Dielectric Permittivity, Structure, and AC Conductivity of Zinc and Copper Doped Bentonite Composites

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Zn and Cu were incorporated into bentonite matrix to form composites with concentration 5 wt%. The prepared samples were characterized via X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDX). XRD studies illustrated that the addition of Zn and Cu into bentonite increases the grain size and crystallinity. The morphological analysis indicated significant changes in the composites. Uniform distribution of Zn is observed, whereas the distribution of Cu is non-uniform on the bentonite surface. EDX pattern confirmed the presence of Zn and Cu in the doped samples. The dielectric response was investigated in the frequency range of 1–300 kHz at different temperatures. Adding Zn and Cu reduced the dielectric constant and dielectric loss. Dielectric performance is associated firmly with the microstructure of material, thus the Cu-BT composite showed the lowest value which could be ascribed to the heterogeneous distribution of Cu and the largest grain size. The ac conductivity, σ’, spectra follow Jonscher’s power law. The frequency exponent was estimated from fitting the σ’ data and was found to be greater than 1 indicating that the well-localized hopping and/or reorientational motion is responsible for the conduction process. The conduction mechanism was explained based on the Jump Relaxation Model. The low dielectric loss and the frequency stability of dielectric constant make Cu-BT composite a potential candidate for capacitor application at high frequencies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. X. Wang, C. Yan, A. Sumboja, P.S. Lee, High performance porous nickel cobalt oxide nanowires for asymmetric supercapacitor. Nano Energy 3, 119–126 (2014)

    Article  CAS  Google Scholar 

  2. A.T. Lima, J.G. Loch, P.J. Kleingeld, Bentonite electrical conductivity: a model based on series–parallel transport. J. Appl. Electrochem. 40(6), 1061–1068 (2010)

    Article  CAS  Google Scholar 

  3. C.-C. Yang, Study of alkaline nanocomposite polymer electrolytes based on PVA–ZrO2–KOH. Mater. Sci. Eng. B 131(1–3), 256–262 (2006)

    Article  CAS  Google Scholar 

  4. S. Sang, J. Zhang, Q. Wu, Y. Liao, Influences of bentonite on conductivity of composite solid alkaline polymer electrolyte PVA-bentonite-KOH-H2O. Electrochim. Acta 52(25), 7315–7321 (2007)

    Article  CAS  Google Scholar 

  5. A. Barroso-Bogeat, M. Alexandre-Franco, C. Fernández-González, J. Sánchez-González, V. Gómez-Serrano, Electrical conductivity of metal (Hydr) oxide–activated carbon composites under compression. A comparison study. Mater. Chem. Phys. 152, 113–122 (2015)

    Article  CAS  Google Scholar 

  6. Y. She, B. Tang, D. Li, X. Tang, J. Qiu, Z. Shang, W. Hu, Mixed nickel-cobalt-molybdenum metal oxide nanosheet arrays for hybrid supercapacitor applications. Coatings 8(10), 340 (2018)

    Article  Google Scholar 

  7. K. Kinoshita, Carbon: Electrochemical and Physicochemical Properties (John Wiley & Sons, New York, 1988)

  8. P.M. Costanzo, Baseline studies of the clay minerals society source clays: introduction. Clays Clay Miner. 49(5), 372–373 (2001)

    Article  CAS  Google Scholar 

  9. H. Kaden, F. Königer, M. Strømme, G.A. Niklasson, K. Emmerich, Low-frequency dielectric properties of three bentonites at different adsorbed water states. J. Colloid Interface Sci. 411, 16–26 (2013)

    Article  CAS  PubMed  Google Scholar 

  10. B. Conway, W. Pell, Double-layer and pseudocapacitance types of electrochemical capacitors and their applications to the development of hybrid devices. J. Solid State Electrochem. 7(9), 637–644 (2003)

    Article  CAS  Google Scholar 

  11. Z. Issaabadi, M. Nasrollahzadeh, S.M. Sajadi, Green synthesis of the copper nanoparticles supported on bentonite and investigation of its catalytic activity. J. Clean. Prod. 142, 3584–3591 (2017)

    Article  CAS  Google Scholar 

  12. M.W. Amer, A.M. Awwad, Green synthesis of copper nanoparticles by citrus limon fruits extract, characterization and antibacterial activity. Chem. Int. 7, 1–8 (2021)

    CAS  Google Scholar 

  13. V. Roy, A. Djurišić, W. Chan, J. Gao, H. Lui, C. Surya, Luminescent and structural properties of ZnO nanorods prepared under different conditions. Appl. Phys. Lett. 83(1), 141–143 (2003)

    Article  CAS  Google Scholar 

  14. L. Coelho, D. Viegas, J.L. Santos, J. De Almeida, Characterization of zinc oxide coated optical fiber long period gratings with improved refractive index sensing properties. Sens. Actuators B 223, 45–51 (2016)

    Article  CAS  Google Scholar 

  15. E. Muchuweni, T. Sathiaraj, H. Nyakotyo, Synthesis and characterization of zinc oxide thin films for optoelectronic applications. Heliyon 3(4), e00285 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. A.H. Bashal, M.H. Saad, M.A. Khalafalla, The effect of nickel percentage on the dielectric properties of bentonite. J. Taibah Univ. Sci. 14(1), 496–499 (2020)

    Article  Google Scholar 

  17. Y. Jiang, T. Huang, L. Dong, Z. Qin, H. Ji, Ni/bentonite catalysts prepared by solution combustion method for CO2 methanation. Chin. J. Chem. Eng. 26(11), 2361–2367 (2018)

    Article  CAS  Google Scholar 

  18. L. Zhirong, M.A. Uddin, S. Zhanxue, FT-IR, XRD analysis of natural Na-bentonite and Cu (II)-loaded Na-bentonite. Spectrochim. Acta. A 79(5), 1013–1016 (2011)

    Article  Google Scholar 

  19. M. Auboiroux, P. Baillif, J. Touray, F. Bergaya, Fixation of Zn2+ and Pb2+ by a Ca-montmorillonite in brines and dilute solutions: preliminary results. Appl. Clay Sci. 11(2–4), 117–126 (1996)

    Article  CAS  Google Scholar 

  20. E. Eren, B. Afsin, An investigation of Cu (II)adsorption by raw and acid-activated bentonite: a combined potentiometric, thermodynamic, XRD, IR, DTA study. J. Hazard. Mater. 151(2–3), 682–691 (2008)

    Article  CAS  PubMed  Google Scholar 

  21. D.-J. Lin, C.-L. Chang, F.-M. Huang, L.-P. Cheng, Effect of salt additive on the formation of microporous poly (vinylidene fluoride) membranes by phase inversion from LiClO4/water/DMF/PVDF system. Polymer 44(2), 413–422 (2003)

    Article  CAS  Google Scholar 

  22. L. Alexander, H.P. Klug, Determination of crystallite size with the X-ray spectrometer. J. Appl. Phys. 21(2), 137–142 (1950)

    Article  CAS  Google Scholar 

  23. F. Kremer, A. Schönhals, Broadband Dielectric Spectroscopy (Springer, Berlin, 2002)

    Google Scholar 

  24. A. Abou Elfadl, A. Ismail, M. Mohammed, Dielectric study and AC conduction mechanism of gamma irradiated nano–composite of polyvinyl alcohol matrix with Cd 0.9 Mn 0.1 S. J. Mater. Sci. Mater. Electron. 31(11), 8297–8307 (2020)

    Article  CAS  Google Scholar 

  25. R. Khalil, Impedance and modulus spectroscopy of poly (vinyl alcohol)-Mg [ClO4]2 salt hybrid films. Appl. Phys. A 123(6), 422 (2017)

    Article  Google Scholar 

  26. A. Singh, S.M. Mursalin, P. Rana, S. Sen, Electrical properties of palladium-doped CaCu3Ti4O12 ceramics. Appl. Phys. A 120(3), 1011–1021 (2015)

    Article  CAS  Google Scholar 

  27. Q. Chen, W. Shi, Y. Xu, D. Wu, Y. Sun, Visible-light-responsive Ag–Si codoped anatase TiO2 photocatalyst with enhanced thermal stability. Mater. Chem. Phys. 125(3), 825–832 (2011)

    Article  CAS  Google Scholar 

  28. A. Raghavender, K. Jadhav, Dielectric properties of Al-substituted Co ferrite nanoparticles. Bull. Mater. Sci. 32(6), 575–578 (2009)

    Article  CAS  Google Scholar 

  29. D. Singh, P. Yadav, N. Singh, C. Kant, M. Kumar, S.D. Sharma, K. Saini, Dielectric properties of Fe-doped TiO2 nanoparticles synthesised by sol–gel route. J. Exp. Nanosci. 8(2), 171–183 (2013)

    Article  CAS  Google Scholar 

  30. S. Krohns, J. Lu, P. Lunkenheimer, V. Brize, C. Autret-Lambert, M. Gervais, F. Gervais, F. Bouree, F. Porcher, A. Loidl, Correlations of structural, magnetic, and dielectric properties of undoped and doped CaCu3Ti4O12. Eur. Phys. J. B 72(2), 173–182 (2009)

    Article  CAS  Google Scholar 

  31. J. Wu, C.-W. Nan, Y. Lin, Y. Deng, Giant dielectric permittivity observed in Li and Ti doped NiO. Phys. Rev. Lett. 89(21), 217601 (2002)

    Article  PubMed  Google Scholar 

  32. B.D. Roebuck, S. Goldblith, W. Westphal, Dielectric properties of carbohydrate-water mixtures at microwave frequencies. J. Food Sci. 37(2), 199–204 (1972)

    Article  CAS  Google Scholar 

  33. D. Luan, J. Tang, F. Liu, Z. Tang, F. Li, H. Lin, B. Stewart, Dielectric properties of bentonite water pastes used for stable loads in microwave thermal processing systems. J. Food Eng. 161, 40–47 (2015)

    Article  CAS  Google Scholar 

  34. J.J. Fripiat, A. Jelli, G. Poncelet, J. Andre, Thermodynamic properties of adsorbed water molecules and electrical conduction in montmorillonites and silicas. J. Phys. Chem. A 69, 2185–2197 (1965)

    Article  CAS  Google Scholar 

  35. C. Poinsignon, Protonic conductivity and water dynamics in swelling clays. Solid State Ion. 97, 399–407 (1997)

    Article  CAS  Google Scholar 

  36. N.J. García, J.C. Bazán, Conductivity in Na+-and Li+-montmorillonite as a function of equilibration humidity. Solid State Ion. 92, 139–143 (1996)

    Article  Google Scholar 

  37. N.J. García, N. Bazán, Electrical conductivity of montmorillonite as a function of relative humidity: La-montmorillonite. Clay Miner. 44, 81–88 (2009)

    Article  Google Scholar 

  38. S. Sinha, S.K. Chatterjee, J. Ghosh, A.K. Meikap, Analysis of the dielectric relaxation and Ac conductivity behavior of polyvinyl alcohol-cadmium selenide nanocomposite films. Polym. Compos. 38(2), 287–298 (2017)

    Article  CAS  Google Scholar 

  39. D. Almond, C. Hunter, A. West, The extraction of ionic conductivities and hopping rates from Ac conductivity data. J. Mater. Sci. 19(10), 3236–3248 (1984)

    Article  CAS  Google Scholar 

  40. A.K. Jonscher, The ‘universal’ dielectric response. Nature 267(5613), 673–679 (1977)

    Article  CAS  Google Scholar 

  41. M.A.C. El Hiti, Electrical conductivity of Ni-Mg ferrites. J. Phys. Appl. Phys. 29(3), 501 (1996)

    Article  CAS  Google Scholar 

  42. K. Funke, Jump relaxation in solid electrolytes. Prog. Solid State Chem. 22(2), 111–195 (1993)

    Article  CAS  Google Scholar 

  43. S. Sumi, P.P. Rao, M. Deepa, P. Koshy, Electrical conductivity and impedance spectroscopy studies of cerium based aeschynite type semiconducting oxides: CeTiMO6 (M = Nb or Ta). J. Appl. Phys. 108(6), 063718 (2010)

    Article  Google Scholar 

  44. A. Pelaiz-Barranco, M. Gutierrez-Amador, A. Huanosta, R. Valenzuela, Phase transitions in ferrimagnetic and ferroelectric ceramics by Ac measurements. Appl. Phys. Lett. 73(14), 2039–2041 (1998)

    Article  CAS  Google Scholar 

  45. V. Senthil, T. Badapanda, A. Chithambararaj, A.C. Bose, A. Mohapatra, S. Panigrahi, Dielectric relaxation behavior and electrical conduction mechanism in polymer-ceramic composites based on Sr modified barium zirconium titanate ceramic. J. Polym. Res. 19(7), 1–8 (2012)

    Article  Google Scholar 

  46. P.V. Rao, M.S. Reddy, V.R. Kumar, Y. Gandhi, N. Veeraiah, Dielectric dispersion in PbO-Bi2O3-B2O3 glasses mixed with TiO2. Turk. J. Phys. 32(6), 341–356 (2008)

    CAS  Google Scholar 

  47. S.R. Imanova, S.M. Hasanli, U.F. Samadova, R.K. Guseynov, U.M. Safarzade, Influence of annealing temperature on electrical properties of unmodified bentonite. Eur. J. Eng. Technol. Res. 3(6), 28–31 (2018)

    Google Scholar 

Download references

Acknowledgements

Taif University Researchers Supporting Project Number (TURSP-2020/272) Taif University, Taif, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Abou Elfadl.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abou Elfadl, A., Bashal, A.H. & Althobaiti, M.G. A Study on Dielectric Permittivity, Structure, and AC Conductivity of Zinc and Copper Doped Bentonite Composites. J Inorg Organomet Polym 32, 191–199 (2022). https://doi.org/10.1007/s10904-021-02112-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-021-02112-z

Keywords

Navigation