Skip to main content
Log in

Green Synthesis of Silver Nanoparticles by Using Sansevieria Roxburghiana, Their Characterization and Antibacterial Activity

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

The present study focused on the fabrication, demonstration and application of silver nanoparticles (Ag-nanoparticles), which can be used in biomedical research and ecological cleaning applications. The reducing agents which are present in the leaves of Sansevieria roxburghiana (Sr) plant were involved in the conversion of metal ion to metal nanoparticles. Formation of colloidal Sr-Ag-nanoparticles was preliminarily confirmed by UV–Vis spectroscopy. In the UV–Vis analysis, a predominate peak was observed in the range of around 425 nm relating to the Plasmon absorbance of the Sr-Ag-nanoparticles. Fourier transform infrared spectroscopy was used for the confirmation of phenolic groups involved in the reduction mechanism in the formation of Sr-AgNPs; X-ray diffraction and energy dispersive X-ray analysis are used on behalf of the morphology and elemental composition. The interpretation of size and shape of the Sr-Ag nanoparticles were performed by Scanning electron microscopy systems which confirmed a size range of 10 to 20 nm. Antibacterial activity of bio-synthesized Sr—Sr-Ag nanoparticles shows effective inhibition against human pathogens including, Bacillus subtilis (ATCC 6633) and Escherichia coli (ATCC 25922). Thus, the significant outcomes of this study would help to formulate value-added herbal-based nano-materials in biomedical and nanotechnology industries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. I. Khan, K. Saeed, I. Khan, Arab. J. Chem. 12, 908–931 (2019). https://doi.org/10.1016/j.arabjc.2017.05.011

    Article  CAS  Google Scholar 

  2. C.S. Espenti, K.S.V.K. Rao, K.M. Rao, Mat. Lett. 174, 129–133 (2016)

    Article  CAS  Google Scholar 

  3. B.M. Chang, L. Pan, H.H. Lin, H.C. Chang, Sci. Rep. 9, 13164, (2019). https://www.nature.com/articles/s41598-019-49675-z

  4. W. Haiss, N.T.K. Thanh, J. Aveyard, D.G. Fernig, Anal. Chem. 79(11), 4215–4221 (2007)

    Article  CAS  Google Scholar 

  5. S. Akbar, K. Henrik, J. Liselotte, K. Andreas, M.B. Poul, B.O. Lene, Nanoscale 10, 9097–9107 (2018). https://doi.org/10.1039/C8NR02275E

    Article  Google Scholar 

  6. P.A. Clara, A.W. Katherine, O.O. Sherine, M.D. Kathryn, PLoS ONE 9(1), e85981 (2014). https://doi.org/10.1371/journal.pone.0085981

    Article  CAS  Google Scholar 

  7. P. Mathur, S. Jha, S. Ramteke, N.K. Jain, Art. Cells Nanomed. Biotech. 46(sup1), 115–126 (2018). https://doi.org/10.1080/21691401.2017.1414825

    Article  CAS  Google Scholar 

  8. C. Bankier, R.K. Matharu, Y.K. Cheong, Sci. Rep. 9, 16074 (2019). https://doi.org/10.1038/s41598-019-52473-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. P.N. Navya, A. Kaphle, S.P. Srinivas, S.K. Bhargava, V.M. Rotello, H.K. Daima, Nano Converg. 6, 23 (2019). https://doi.org/10.1186/s40580-019-0193-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. C.S. Espenti, K.S.V.K. Rao, K.M. Rao, S.P. Kumar, Cog. Chem. 2(1), 1144296 (2016)

    Google Scholar 

  11. Z. Zhang, W. Shen, J. Xue, Y. Liu, Y. Liu, P. Yan, J. Liu, J. Tang, Nano. Res. Let. (2018). https://doi.org/10.1186/s11671-018-2450-4

    Article  Google Scholar 

  12. C.S. Espenti, K.S.V.K. Rao, K.M. Rao, J. App. Pharm. Sci. 6(10), 055–062 (2016)

    Article  CAS  Google Scholar 

  13. K.Y. Khaw, M.O. Parat, P.N. Shaw, J.R. Falconer, Molecules 22, 1186 (2017)

    Article  Google Scholar 

  14. J. Kohl, R. Kolnaar, W.J. Ravensberg, Front. Plant Sci. 10, 845 (2019)

    Article  Google Scholar 

  15. R.A. Hamouda, M.H. Hussein, R.A. Abo-elmagd, Sci. Rep. 9, 13071 (2019). https://doi.org/10.1038/s41598-019-49444-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. K.M. Reddy, Y.R. Reddy, E.C. Sekhar, L.K. Babu, Matter: Int J. Sci. Tech. 3(2), 478–492 (2017). https://doi.org/10.20319/mijst.2017.32.478492

    Article  Google Scholar 

  17. S. Jaswanth, M. Umamahesh, A. Prasad, M. Arundathi, R.G. Venkata, N. Hariram, A.V. Rajulu, Inorg. Nano-Met. Chem. (2020). https://doi.org/10.1080/24701556.2020.1725571

    Article  Google Scholar 

  18. K.M. Rao, C.S. Espenti, K.S.V.K. Rao, Ind. J. Adv. Chem. Sci. 5, 24–29 (2017). https://doi.org/10.22607/IJACS.2017.501004

    Article  CAS  Google Scholar 

  19. K.S.V.K. Rao, C.S. Espenti, K.M. Rao, Ind. J. Adv. Chem. Sci. 5(2), 102–107 (2017). https://doi.org/10.22607/IJACS.2017.502005

    Article  CAS  Google Scholar 

  20. A. Sirinthipaporn, W. Jiraungkoorskul, Pharmacogn. Rev. 11(21), 35–38 (2017). https://doi.org/10.4103/phrev.phrev_53_16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. F. Mujeeb, P. Bajpai, N. Pathak, BioMed. Res. Inter. (2014). https://doi.org/10.1155/2014/497606

    Article  Google Scholar 

  22. A.B. Birusanti, M. Umamahesh, C.S. Espenti, IET Nanobiotech. 13(1), 71–76 (2019). https://doi.org/10.1049/iet-nbt.2018.5117

    Article  Google Scholar 

  23. M. Awwad, N.M. Salem, A.O. Abdeen, Int. J. Ind. Chem. 4, 29 (2013). https://www.industchem.com/content/4/1/29

  24. M. Michalska, A. Iwan, M. Andrzejczuk, A. Roguska, A. Sikora, B. Boharewicz, I. Tazbir, A. Hreniak, S. Poposki, K.P. Korona, New J. Chem. (2018). https://doi.org/10.1039/C7NJ05180H

    Article  Google Scholar 

  25. M. Vanaja, G. Annadurai, Appl. Nanosci. 3, 217–223 (2013). https://doi.org/10.1007/s13204-012-0121-9

    Article  CAS  Google Scholar 

  26. M. Stefanos, M.P. Roger, T.K.T. Nguyen, Nanoscale 10, 12871 (2018). https://doi.org/10.1039/C8NR02278J

    Article  Google Scholar 

  27. A.A. Alomari, K.E. Kloub Fares, N.E. Moustafa, Cog. Chem. 4(1), 1532374 (2018). https://doi.org/10.1080/23312009.2018.1532374

    Article  CAS  Google Scholar 

  28. R.H. Ahmed, D.E. Mustafa, Int. Nano Lett. 10, 1–14 (2020). https://doi.org/10.1007/s40089-019-00291-9

    Article  CAS  Google Scholar 

  29. K.S. Siddiqi, A. Husen, R.A.K. Rao, J. Nanobiotech. 16, 14 (2018). https://doi.org/10.1186/s12951-018-0334-5

    Article  CAS  Google Scholar 

  30. S.H. Lee, B.H. Jun, Int. J. Mol. Sci. 20, 865 (2019). https://doi.org/10.3390/ijms20040865

    Article  CAS  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to C. S. Espenti or Y. V. Rami Reddy.

Ethics declarations

Conflict of interest

The authors declare no conficts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rama Krishna, A.G., Espenti, C.S., Rami Reddy, Y.V. et al. Green Synthesis of Silver Nanoparticles by Using Sansevieria Roxburghiana, Their Characterization and Antibacterial Activity. J Inorg Organomet Polym 30, 4155–4159 (2020). https://doi.org/10.1007/s10904-020-01567-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-020-01567-w

Keywords

Navigation