Skip to main content
Log in

Influence of Heat Treatment Temperature on the Microstructure Evolution of Poly(vinylborosiloxane) Derived Ceramics

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Polycondensation of boric acid and vinyltriethoxysilane in 1:2, 1:1.5 and 1:1 mole ratio in diglyme at 83–87 °C for 3 h using hydrochloric acid as catalyst afforded vinylfunctionalized borosiloxane oligomers soluble in the reaction medium. Complete removal of ethanol, the by-product, and diglyme rendered the oligomers intractable due to the advancement of polycondensation. They were characterized by FTIR and TGA and converted to ceramics by heat treatment at 900 °C, 1500 °C and 1650 °C in argon atmosphere. The ceramics obtained were characterized by IR, Raman, 13C-and 29Si-solid state NMR spectroscopy and XRD. These studies infer the formation of SiOC/SiBOC glass on pyrolysis of these oligomers at 900 °C and onset of formation of β-SiC at 1500 °C. On further heat treatment at 1650 °C, complete conversion of the ceramic to a mixture of α and β-SiC was observed along with the presence of diamond like carbon phases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J. Bill, F. Aldinger, Precursor-Derived Covalent Ceramics, in Precursor-Derived Deramics, ed. by J. Bill, F. Wakai, F. Aldinger (Wiley-VCH, Weinheim, Federal Republic of Germany, 1999), pp. 32–51

    Google Scholar 

  2. E. Ionescu, H.J. Kleebe, R. Riedel, Silicon-containing polymer-derived ceramic nanocomposites (PDC-NCs): preparative approaches and properties. Chem. Soc. Rev. 41, 5032 (2012)

    CAS  PubMed  Google Scholar 

  3. P. Colombo, G. Mera, R. Riedel, G.D. Soraru, Polymer-derived ceramics: 40 years of research and innovation in advanced ceramics. J Am. Ceram. Soc. 93, 1805–1837 (2010)

    CAS  Google Scholar 

  4. P. Colombo, R. Raj, M. Singh, Advances in Polymer Derived Ceramics and Composites: Ceramic Transactions (John Wiley & Sons, New Jersey, 2010)

    Google Scholar 

  5. P. Colombo, R. Riedel, G.D. Soraru, H.J. Kleebe, Polymer Derived Ceramics: From Nano-Structure to Applications (Destech Publications Inc, Lancaster, 2010)

    Google Scholar 

  6. I. Emanuel, G. Mera, R. Riedel, Polymer-Derived Ceramics (PDCs): Materials Design Towards Applications at Ultrahigh-Temperatures and in Extreme Environments: In Nanotechnol. Concepts, Methodol. Tools, Appl. IGI Global, 2014, pp. 1108–1139.

  7. G. Mera, M. Gallei, S. Bernard, E. Ionescu, Ceramic nanocomposites from tailor-made preceramic polymers. Nanomaterials 5, 468–540 (2015)

    CAS  PubMed  PubMed Central  Google Scholar 

  8. J.O.B. Rivera, M.H. Talou, Y.M.X.H. Hung, M.A. Camerucci, Study of a silicon-based preceramic for the processing of polymer-derived ceramics. J. Sol-Gel Sci. Tech. 91, 446–460 (2019)

    CAS  Google Scholar 

  9. C. Stabler, E. Ionescu, M. Graczyk-Zajac, I. Gonzalo-Juan, R. Riedel, Silicon oxycarbide glasses and glass-ceramics: “All-Rounder” materials for advanced structural and functional applications. J. Am. Ceram. Soc. 101, 4817–4856 (2018)

    CAS  Google Scholar 

  10. Y. Blum, G.D. Sorarù, A.P. Ramaswamy, D. Hui, S.M. Carturan, Controlled mesoporosity in SiOC via chemically bonded polymeric “Spacers”. J. Am. Ceram. Soc. 96, 2785–2792 (2013)

    CAS  Google Scholar 

  11. A.D. Chomel, P. Dempsey, J. Latournerie, D. Hourlier-Bahloul, U.A. Jayasooriya, Gel to glass transformation of methyltriethoxysilane: a silicon oxycarbide glass precursor investigated using vibrational spectroscopy. Chem. Mater. 17, 4468–4473 (2005)

    CAS  Google Scholar 

  12. B.V.M. Kumar, Y.W. Kim, Processing of polysiloxane-derived porous ceramics: a review. Sci. Technol. Adv. Mater. 11, 1–16 (2010)

    Google Scholar 

  13. D. Erb, K. Lu, Effect of additive structure and size on SiO2 formation in polymer-derived SiOC ceramics. J. Am. Ceram. Soc. 101, 5378–5388 (2018)

    CAS  Google Scholar 

  14. J. Ma, L. Shi, Y. Shi, S. Luo, J. Xu, Pyrolysis of polymethylsilsesquioxane. J. Appl. Polym. Sci. 85, 1077–1086 (2002)

    CAS  Google Scholar 

  15. M. Sitarz, C. Czosnek, P. Jeleń, M. Odziomek, Z. Olejniczak, M. Kozanecki, J.F. Janik, SiOC glasses produced from silsesquioxanes by the aerosol-assisted vapor synthesis method, Spectrochim. Acta Part A: Mol. Biomol. Spectrosc. 112, 440–445 (2013)

    CAS  Google Scholar 

  16. P.R. Aravind, G.D. Soraru, Porous silicon oxycarbide glasses from hybrid ambigels. Micro. Meso. Mat. 142, 511–517 (2011)

    CAS  Google Scholar 

  17. M.A. Schiavon, C. Gervais, F. Babonneau, G.D. Soraru, Crystallization behavior of novel silicon boron oxycarbide glasses. J. Am. Ceram. Soc. 87, 203–208 (2004)

    CAS  Google Scholar 

  18. D. Devapal, S. Packirisamy, P. V. Prabhakaran, K. J. Sreejith, A. Paul, A. Painuly, Process for solventless synthesis of resinous borosiloxane oligomer precursors for ceramics, Indian Patent 277874 (2016).

  19. T.S. Sasikala, D. Thomas, D. Devapal, Studies on evolution of nano SiC ceramics from allylborosiloxane. Ceram. Int. 41, 1618–1626 (2016)

    Google Scholar 

  20. T.S. Sasikala, D. Devapal, Studies on high temperature evolution of polymer derived nano SiC ceramics. Mater. Sci. Forum 830, 493–497 (2015)

    Google Scholar 

  21. D. Devapal, S. Packirisamy, K.J. Sreejith, P.V. Ravindran, B.K. George, Synthesis, characterization and ceramic conversion studies of borosiloxane oligomers from phenyltrialkoxysilanes. J. Inorg. Organomet. Polym. 20, 666–674 (2010)

    CAS  Google Scholar 

  22. K.J. Sreejith, P.V. Prabhakaran, K.P. Laly, R. Dimple, S. Packirisamy, Vinyl-functionalized poly(borosiloxane) as precursor for SiC/SiBOC nanocomposite. Ceram. Int. 42, 15285–15293 (2016)

    CAS  Google Scholar 

  23. S. Rubinsztajn, New facile process for synthesis of borosiloxane resins. J. Inorg. Organomet. Polym. Mater. 24, 1092–1095 (2014)

    CAS  Google Scholar 

  24. V. Vijay, S. Bhuvaneswari, V.M. Biju, R. Devasia, Influence of titanium silicide active filler on the microstructure evolution of borosiloxane-derived Si–B–O–C ceramics. J. Ceram. Sci. Tech. 07, 97–106 (2016)

    Google Scholar 

  25. V. Vijay, V.M. Biju, R. Devasia, Active filler controlled polymer pyrolysis—a promising route for the fabrication of advanced ceramics. Ceram. Int. 42, 15592–15596 (2016)

    CAS  Google Scholar 

  26. A. Klonczynski, G. Schneider, R. Riedel, R. Theissmann, Influence of boron on the microstructure of polymer derived SiCO ceramics. Adv. Eng. Mater. 6, 64–68 (2004)

    CAS  Google Scholar 

  27. A.H. Tavakoli, R. Campostrini, C. Gervais, F. Babonneau, J. Bill, G.D. Sorarù, A. Navrotsky, Energetics and structure of polymer-derived Si–(B–)O–C glasses: effect of the boron content and pyrolysis temperature. J. Am. Ceram. Soc. 77, 303–309 (2014)

    Google Scholar 

  28. S. Hoshii, A. Kojima, S. Otani, Mechanical properties and oxidation resistivity of carbon fiber/ceramic composites prepared from borosiloxane. J. Mat. Res. 11, 2536–2540 (1996)

    CAS  Google Scholar 

  29. R.L. Siqueira, I.V.P. Yoshida, L.C. Pardini, M.A. Schiavon, Poly(borosiloxanes) as precursors for carbon fiber ceramic matrix composites. Mat. Res. 10, 147–151 (2007)

    CAS  Google Scholar 

  30. K. J. Sreejith, S. Packirisamy, Phenylborosiloxane-Derived Ceramic Matrix Composites, High Temperature Ceramic Materials and Composites, Eds. W. Krenkel, J. Lamon. Aviso VerlagsgesellschaftmbH, Berlin, 2010, pp. 712–718.

  31. B. Swaminathan, A. Painuly, S. K. Manwatkar, S. Packirisamy, Preceramic polymer derived C/CSiC and C/C-SiBCO composites for high temperature applications in High Temperature Ceramic Materials and Composites, Eds. W. Krenkel and J. Lamon. AvisoVerlagsgesellschaftmbH, Berlin, 2010, pp. 724–730.

  32. K.J. Sreejith, A. Painuly, B.V. Rajasekhar, P.P. Shyin, V. Vijay, R. Devasia, P.V. Prabhakaran, S. Packirisamy, A process for polymer-derived Cf/SiBOC ceramic matrix composites, Indian Patent Appl. 201841020417 (2018).

  33. V. Vijay, S. Siva, K.J. Sreejith, P.V. Prabhakaran, R. Devasia, Effect of boron inclusion in SiOC polymer derived matrix on the mechanical and oxidation resistance properties of fiber reinforced composites. Mat. Chem. Phys. 205, 269–277 (2018)

    CAS  Google Scholar 

  34. S.G. Nair, K.J. Sreejith, S. Packirisamy, T.G. Babu, R. Devasia, Polymer derived PyC interphase coating for C/SiBOC composites. Mat. Chem. Phys. 204, 179–186 (2018)

    CAS  Google Scholar 

  35. R. Devasia, S. G. Nair, K. J. Sreejith, S. Packirisamy, Fibre-reinforced ceramic matrix composite material with polymer derived interphase coating. Indian Patent No. 299956 (2018).

  36. G. T. Burns, G. A. Zank, High density silicon carbide sintered bodies from borosiloxanes, US Patent 5,112,779 (1992).

  37. D. Devapal, M. P. Gopakumar, P. V. Prabhakaran, S. Packirisamy, A process for preparation of silicon carbide coated carbon nano-materials using polyborosiloxanes, Indian Patent Appl. 2017–41024214 (2017)

  38. R.P. Alonso, G.D. Soraru, Synthesis and characterization of hybrid borosiloxane gels as precursors for Si–B–O–C fibers. J. Sol-Gel Sci. Tech. 43, 313–319 (2007)

    Google Scholar 

  39. H.W. Bai, G. Wen, X.X. Huang, Z.X. Han, B. Zhong, Z.X. Hu, X.D. Zhang, Synthesis and structural characterization of SiBOC ceramic fibers derived from single-source polyborosiloxane. J. Eur. Ceram. Soc. 31, 931–940 (2011)

    CAS  Google Scholar 

  40. A. Tamayo, R.P. Alonso, F. Rubio, J. Rubio, J.L. Oteo, Synthesis and characterization of boron silicon oxycarbide glass fibers. J Non-Cryst Solids 358, 155–162 (2012)

    CAS  Google Scholar 

  41. K.J. Sreejith, T. Fey, P. Greil, Siliconboronoxycarbide (SiBOC) foam from methyl borosiloxane. Ceram. Trans. 243, 47–60 (2014)

    Google Scholar 

  42. N. Tohge, A. Matsuda, T. Minami, Coating films of 20B2030.80Si02 by the sol-gel method, J. Am. Ceram. Soc., 70 (1987) C13–C15.

    Google Scholar 

  43. M.A. Villegas, J.M.F. Navarro, Characterization of B2O3–SiO2 glasses prepared via sol-gel. J. Mat. Sci. 23, 2464–2478 (1988)

    CAS  Google Scholar 

  44. Y. Abe, T. Gunji, Y. Kimata, M. Kuramata, A. Kasgoz, T. Misono, Preparation of polymetalloxanes as a precursor for oxide ceramics. J. Non-Cryst. Solids 121, 21–25 (1990)

    CAS  Google Scholar 

  45. A. Kasgoz, T. Misono, Y. Abe, Preparation and properties of polyborosiloxanes as precursors for borosilicate formation of Si02–B203 gel fibers and oxides by the sol–gel method using tetraacetoxysilane and borontri-n-butoxide, J. Polym. Sci. A, Polym. Chem. 32 (1994) 1049–1056.

  46. G. Ambadas, S. Packirisamy, K.N. Ninan, Synthesis, characterization and thermal properties of boron and silicon containing preceramic oligomers. J. Mat. Sci. Lett. 21, 1003–1005 (2002)

    CAS  Google Scholar 

  47. S. Packirisamy, G. Ambadas, P.K. Narendranath, K. N. Ninan, A process for the synthesis of boron and silicon containing preceramic oligomers. Indian Patent No. 208583(2007).

  48. D. Devapal, Studies on inorganic and organometallic polymers (Ph.D. Thesis), Mahatma Gandhi University, India, 2007.

  49. P. V. Prabhakaran, Studies on non-oxide ceramics derived from polymers and their applications (Ph.D. Thesis), University of Kerala, India, 2008.

  50. K. J. Sreejith, Polymer derived ceramics and their high temperature applications (Ph.D. Thesis), University of Kerala, India, 2010.

  51. G. D. Soraru, F. Babonneau, C. Gervais, N. Dallabona, Hybrid RSiO1.5/B2O3 gels from modified silicon alkoxides and boric acid, J. Sol–Gel Sci. Technol. 18 (2000) 11–19.

  52. F. D. Snell, C. L. Hilton (eds.), in Encyclopedia of Industrial Chemical Analysis, vol. 7 (Interscience Publishers, New York, 1968, pp. 324.

  53. C. Gervais, F. Babonneau, N. Dallabonna, G.D. Soraru, Sol–gel-derived silicon-boron oxycarbide glasses containing mixed silicon oxycarbide (SiCxO4_x) and Boron Oxycarbide (BCyO3_y) Units. J. Am. Ceram. Soc. 84, 2160–2164 (2001)

    CAS  Google Scholar 

  54. R.A. Mantz, R.F. Jones, K.P. Chaffee, J.D. Lichtenhan, J.W. Gilman, M.K. Ismail, M.J. Burmeister, Thermolysis of polyhedraloligomeric silsesquioxane (POSS) macromers and POSS−siloxanecopolymers. Chem. Mater. 8, 1250–1259 (1996)

    CAS  Google Scholar 

  55. G.D. Soraru, F. Babonneau, S. Maurina, J. Vicens, Sol-gel synthesis of SiBOC glasses. J. Non Cryst. Solids 224, 173–183 (1998)

    Google Scholar 

  56. A.M. Wootton, M. Rappensberger, M.H. Lewis, S. Kitchin, A.P. Howes, R. Dupree, Structural properties of multicomponent SiOC glasses derived from metal alkoxide precursors. J Non-Cryst Solids 204, 217–227 (1996)

    CAS  Google Scholar 

  57. R. Dhiman, V. Petrunin, K. Rana, P. Morgen, Conversion of wooden structures into porous SiC with shape memory synthesis. Ceram. Int. 37, 3281–3289 (2011)

    CAS  Google Scholar 

  58. A. Saha, R. Raj, Crystallization maps for SiCO amorphous ceramics. J. Am. Ceram. Soc. 90, 578–583 (2007)

    CAS  Google Scholar 

  59. P. Scherrer, Bestimmung der Grosse und der inneren Struktur von Kolloidteilchen mittels Rontgenstrahlen. Nachr. Ges. Wiss. Gottingen 26, 98–100 (1918)

    Google Scholar 

  60. M.A. Schiavon, N.A. Armelin, I. Valéria, P. Yoshida, Novel poly(borosiloxane) precursors to amorphous SiBCO ceramics. Mater. Chem. Phy. 112, 1047–1054 (2008)

    CAS  Google Scholar 

  61. G.D. Soraru, N. Dallabona, C. Gervais, F. Babonneau, Organically modified SiO2–B2O3 gels displaying a high content of borosiloxanes (B−O−Si) bonds. Chem Mater. 11, 910–919 (1999)

    CAS  Google Scholar 

  62. D.H. Filsinger, D.B. Bourrie, Silica to silicon: key carbothermic reactions and kinetics. J. Am. Ceram. Soc. 73, 1726–1732 (1990)

    CAS  Google Scholar 

  63. G. Gouadec, P. Colomban, Non-destructive mechanical characterization of SiC fibers by Raman spectroscopy. J. Eur. Cer. Soc. 21, 1249–1259 (2001)

    CAS  Google Scholar 

  64. R. Dhiman, E. Johnson, E.M. Skou, P. Morgen, S.M. Andersen, SiC nanocrystals as Pt catalyst supports for fuel cell applications. J. Mater. Chem. A 1, 6030–6036 (2013)

    CAS  Google Scholar 

  65. H.P. Martin, E. Muller, G. Irmer, F. Babonneau, Crystallization behaviour and polytype transformation of polymer derived Silicon carbide. J. Eur. Cer. Soc. 17, 659–666 (1997)

    CAS  Google Scholar 

  66. A.C. Ferrari, J. Robertson, Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B 61(20), 14095–14107 (2000)

    CAS  Google Scholar 

  67. G.W. Wagner, B.K. Na, M.A. Vannice, High resolution solid state NMR of 29Si and 13C in β-Silicon carbides. J. Phys. Chem. 93, 5061–5064 (1989)

    CAS  Google Scholar 

  68. X. Xie, Z.Yang, R. Ren, Leon L. Shaw, Solid state 29Si magic angle spinning NMR: investigation of bond formation and crystallinity of silicon and graphite powder mixtures during high energy milling, Mater. Sci. Eng. A255 (1998) 39–48.

    CAS  Google Scholar 

  69. A.D. Irwin, J.S. Holmgren, T.W. Zerda, J. Jonas, Spectroscopic investigation of Borosiloxane bond formation in the sol-gel process. J. Non-cryst. Solids 89, 191–205 (1987)

    CAS  Google Scholar 

  70. A.D. Irwin, J.S. Holmgren, J. Jonas, Solid state 29Si and 11B NMR studies of sol gel derived borosilicates. J. Non-cryst. Solids 101, 249–254 (1988)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Deepa Devapal or S. Packirisamy.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Devapal, D., Sreejith, K.J., Swaminathan, B. et al. Influence of Heat Treatment Temperature on the Microstructure Evolution of Poly(vinylborosiloxane) Derived Ceramics. J Inorg Organomet Polym 30, 2224–2233 (2020). https://doi.org/10.1007/s10904-020-01457-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-020-01457-1

Keywords

Navigation