Skip to main content
Log in

Effect of zirconium on precursor chemistry, phase stability, and oxidation of polyvinylsilazane-derived SiCN ceramics

  • Ceramics
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The present work focuses on the structural changes of polyvinylsilazane precursor upon modification by a molecular precursor of zirconium and processing of high temperature stable nanostructured SiCN and SiZrCNO ceramics. The bonding characteristics of the polymerized as well as pyrolyzed samples of pure and Zr-modified polyvinylsilazane precursor and their polymer to ceramic conversion processes have been analyzed. Zr doping shifts the ceramization process to an earlier temperature as compared to the undoped preceramic polymer. The structural evolution of metastable SiCN and SiZrCNO systems was studied by using X-ray diffraction, high-resolution transmission electron microscopy, and diffraction intensity profiles. The pure SiCN system remained as a single-phase amorphous ceramic up to 1400 °C. While the Zr-doped SiCN ceramics also appeared as monophasic amorphous ceramic at 1000 °C, nanocrystals of t-ZrO2 were found to precipitate throughout the ceramic microstructure with exceptional homogeneity for samples pyrolyzed at higher temperatures. The high temperature stability of t-ZrO2 in the amorphous SiCN matrix has also been demonstrated. Constant rate heating oxidation studies indicated remarkable improvement in mass retention of the Zr-doped SiCN system as compared to the undoped ceramic for temperatures as high as 1500 °C. The retention of tetragonal phase of ZrO2 in the ceramic matrix, even after pyrolysis at 1400 °C and improved oxidation resistance provide significant advantages for achieving tough and thermally stable SiCN-ZrO2 ceramic nanocomposites for bond coat applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Padture NP (2016) Advanced structural ceramics in aerospace propulsion. Nat Mater 15(8):804–809. https://doi.org/10.1038/nmat4687

    Article  CAS  Google Scholar 

  2. Marshall DB, Cox BN (2008) Integral textile ceramic structures. Annu Rev Mater Res 38(1):425–443. https://doi.org/10.1146/annurev.matsci.38.060407.130214

    Article  CAS  Google Scholar 

  3. Flores O, Bordia RK, Nestler D, Krenkel W, Motz G (2014) Ceramic fibers based on SiC and SiCN systems: current research, development, and commercial status. Adv Eng Mater 16(6):621–636. https://doi.org/10.1002/adem.201400069

    Article  CAS  Google Scholar 

  4. Ren Z, Singh G (2019) Nonoxide polymer-derived CMCs for “super” turbines. Am Ceram Soc Bull, 98 (3):34–39. https://par.nsf.gov/biblio/10108196

  5. Sudhir B, Raj R (2006) Effect of steam velocity on the hydrothermal oxidation/volatilization of silicon nitride. J Am Ceram Soc 89(4):1380–1387. https://doi.org/10.1111/j.1551-2916.2005.00907.x

    Article  CAS  Google Scholar 

  6. Meschter PJ, Opila EJ, Jacobson NS (2013) Water vapor-mediated volatilization of high-temperature materials. Annu Rev Mater Res 43(1):559–588. https://doi.org/10.1146/annurev-matsci-071312-121636

    Article  CAS  Google Scholar 

  7. Turcer LR, Padture NP (2018) Towards multifunctional thermal environmental barrier coatings (TEBCs) based on rare-earth pyrosilicate solid-solution ceramics. Scr Mater 154:111–117. https://doi.org/10.1016/j.scriptamat.2018.05.032

    Article  CAS  Google Scholar 

  8. Fritsch M, Klemm H, Herrmann M, Schenk B (2006) Corrosion of selected ceramic materials in hot gas environment. J Eur Ceram Soc 26(16):3557–3565. https://doi.org/10.1016/j.jeurceramsoc.2006.01.015

    Article  CAS  Google Scholar 

  9. Riedel R, Kienzle A, Dressler W, Ruwisch L, Bill J, Aldinger F (1996) A silicoboron carbonitride ceramic stable to 2000°C. Nature 382:796. https://doi.org/10.1038/382796a0

    Article  CAS  Google Scholar 

  10. Bharadwaj L, Fan Y, Zhang L, Jiang D, An L (2004) Oxidation behavior of a fully dense polymer-derived amorphous silicon carbonitride ceramic. J Am Ceram Soc 87(3):483–486. https://doi.org/10.1111/j.1551-2916.2004.00483.x

    Article  CAS  Google Scholar 

  11. Riedel R, Mera G, Hauser R, Klonczynski A (2006) Silicon-based polymer-derived ceramics: synthesis properties and applications-a review. J Ceram Soc JAPAN 114(1330):425–444. https://doi.org/10.2109/jcersj.114.425

    Article  CAS  Google Scholar 

  12. Emanuel I, Gabriela M, Ralf R (2013) Polymer-derived ceramics (PDCs): materials design towards applications at ultrahigh-temperatures and in extreme environments. In: Low IM, Sakka Y, Hu CF (eds) MAX phases and ultra-high temperature ceramics for extreme environments. IGI Global, Hershey

    Google Scholar 

  13. Saha A, Shah SR, Raj R (2004) Oxidation behavior of SiCN–ZrO2 fiber prepared from alkoxide-modified silazane. J Am Ceram Soc 87(8):1556–1558. https://doi.org/10.1111/j.1551-2916.2004.01556.x

    Article  CAS  Google Scholar 

  14. Shah SR, Raj R (2001) Nanoscale densification creep in polymer-derived silicon carbonitrides at 1350°C. J Am Ceram Soc 84(10):2208–2212. https://doi.org/10.1111/j.1151-2916.2001.tb00989.x

    Article  CAS  Google Scholar 

  15. Paolo C, Gabriela M, Ralf R, Domenico SG (2010) Polymer-derived ceramics: 40 years of research and innovation in advanced ceramics. J Am Ceram Soc 93(7):1805–1837. https://doi.org/10.1111/j.1551-2916.2010.03876.x

    Article  CAS  Google Scholar 

  16. Saha A, Raj R, Williamson DL, Kleebe HJ (2005) Characterization of nanodomains in polymer-derived SiCN ceramics employing multiple techniques. J Am Ceram Soc 88(1):232–234. https://doi.org/10.1111/j.1551-2916.2004.00034.x

    Article  CAS  Google Scholar 

  17. Kleebe HJ, Störmer H, Trassl S, Ziegler G (2001) Thermal stability of SiCN ceramics studied by spectroscopy and electron microscopy. Appl Organomet Chem 15(10):858–866. https://doi.org/10.1002/aoc.243

    Article  CAS  Google Scholar 

  18. Kleebe HJ (1998) Microstructure and stability of polymer-derived ceramics; the Si–C–N system. Phys Status Solidi (a) 166(1):297–313. https://doi.org/10.1002/(SICI)1521-396X(199803)166:1%3c297::AID-PSSA297%3e3.0.CO;2-3

    Article  CAS  Google Scholar 

  19. Riedel R, Passing G, Schonfelder H, Brook RJ (1992) Synthesis of dense silicon-based ceramics at low temperatures. Nature 355(6362):714–717. https://doi.org/10.1038/355714a0

    Article  CAS  Google Scholar 

  20. Riedel R, Kleebe H-J, Schonfelder H, Aldinger F (1995) A covalent micro/nano-composite resistant to high-temperature oxidation. Nature 374(6522):526–528. https://doi.org/10.1038/374526a0

    Article  CAS  Google Scholar 

  21. Mera G, Riedel R, Poli F, Müller K (2009) Carbon-rich SiCN ceramics derived from phenyl-containing poly(silylcarbodiimides). J Eur Ceram Soc 29(13):2873–2883. https://doi.org/10.1016/j.jeurceramsoc.2009.03.026

    Article  CAS  Google Scholar 

  22. Martin H-P, Müller E, Irmer G, Babonneau F (1997) Crystallisation behaviour and polytype transformation of polymer-derived silicon carbide. J Eur Ceram Soc 17(5):659–666. https://doi.org/10.1016/S0955-2219(96)00117-3

    Article  CAS  Google Scholar 

  23. Iwamoto Y, Völger W, Kroke E, Riedel R, Saitou T, Matsunaga K (2001) Crystallization behavior of amorphous silicon carbonitride ceramics derived from organometallic precursors. J Am Ceram Soc 84(10):2170–2178. https://doi.org/10.1111/j.1151-2916.2001.tb00983.x

    Article  CAS  Google Scholar 

  24. Saha A, Raj R (2007) Crystallization maps for SiCO amorphous ceramics. J Am Ceram Soc 90(2):578–583. https://doi.org/10.1111/j.1551-2916.2006.01423.x

    Article  CAS  Google Scholar 

  25. Anand R, Sahoo SP, Nayak BB, Behera SK (2019) Phase evolution, nanostructure, and oxidation resistance of polymer derived SiTiOC ceramic hybrid. Ceram Int 45(5):6570–6576. https://doi.org/10.1016/j.ceramint.2018.12.024

    Article  CAS  Google Scholar 

  26. Ionescu E, Linck C, Fasel C, Müller M, Kleebe HJ, Riedel R (2010) Polymer-derived SiOC/ZrO2 ceramic nanocomposites with excellent high-temperature stability. J Am Ceram Soc 93(1):241–250. https://doi.org/10.1111/j.1551-2916.2009.03395.x

    Article  CAS  Google Scholar 

  27. Anand R, Sahoo SP, Nayak BB, Behera SK (2020) Phase evolution in Zr-doped preceramic polymer derived SiZrOC hybrids. Ceram Int 46(7):9962–9967. https://doi.org/10.1016/j.ceramint.2019.12.196

    Article  CAS  Google Scholar 

  28. Linck C, Ionescu E, Papendorf B, Galuskova D, Galusek D, Ŝajgalík P, Riedel R (2012) Corrosion behavior of silicon oxycarbide-based ceramic nanocomposites under hydrothermal conditions. Int J Mater Res 103(1):31–39. https://doi.org/10.3139/146.110625

    Article  CAS  Google Scholar 

  29. Terauds K, Raj R (2013) Limits to the stability of the amorphous nature of polymer-derived HfSiCNO compounds. J Am Ceram Soc 96(7):2117–2123. https://doi.org/10.1111/jace.12382

    Article  CAS  Google Scholar 

  30. Terauds K, Marshall DB, Raj R (2013) Oxidation of polymer-derived HfSiCNO up to 1600°C. J Am Ceram Soc 96(4):1278–1284. https://doi.org/10.1111/jace.12239

    Article  CAS  Google Scholar 

  31. Anand R, Nayak BB, Behera SK (2019) Coarsening kinetics of nanostructured ZrO2 in Zr-doped SiCN ceramic hybrids. J Alloys Compd 811:151939. https://doi.org/10.1016/j.jallcom.2019.151939

    Article  CAS  Google Scholar 

  32. Saha A, Shah SR, Raj R (2003) Amorphous silicon carbonitride fibers drawn from alkoxide modified ceraset™. J Am Ceram Soc 86(8):1443–1445. https://doi.org/10.1111/j.1151-2916.2003.tb03493.x

    Article  CAS  Google Scholar 

  33. Sun J, Li T, Reitz A, Fu Q, Riedel R, Yu Z (2020) High-temperature stability and oxidation behavior of SiOC/HfO2 ceramic nanocomposite in air. Corros Sci 175:108866. https://doi.org/10.1016/j.corsci.2020.108866

    Article  CAS  Google Scholar 

  34. King A, Singh R, Nayak BB (2020) Synthesis and photoluminescence behaviour of ultra-fine particles of Eu-doped zirconia nanopowders. J Solid State Chem 282:121106. https://doi.org/10.1016/j.jssc.2019.121106

    Article  CAS  Google Scholar 

  35. Hannink RHJ, Kelly PM, Muddle BC (2000) Transformation toughening in zirconia-containing ceramics. J Am Ceram Soc 83(3):461–487. https://doi.org/10.1111/j.1151-2916.2000.tb01221.x

    Article  CAS  Google Scholar 

  36. Wang X, Schmidt F, Hanaor D, Kamm PH, Li S, Gurlo A (2019) Additive manufacturing of ceramics from preceramic polymers: A versatile stereolithographic approach assisted by thiol-ene click chemistry. Addit Manuf 27:80–90. https://doi.org/10.1016/j.addma.2019.02.012

    Article  CAS  Google Scholar 

  37. Sorarù GD, Pederiva L, Latournerie J, Raj R (2002) Pyrolysis kinetics for the conversion of a polymer into an amorphous silicon oxycarbide ceramic. J Am Ceram Soc 85(9):2181–2187. https://doi.org/10.1111/j.1151-2916.2002.tb00432.x

    Article  Google Scholar 

  38. Wrobel AM, Uznanski P, Walkiewicz-Pietrzykowska A, Jankowski K (2017) Amorphous silicon carbonitride thin-film coatings produced by remote nitrogen microwave plasma chemical vapour deposition using organosilicon precursor. Appl Organomet Chem 31(12):e3871. https://doi.org/10.1002/aoc.3871

    Article  CAS  Google Scholar 

  39. Shah SR, Raj R (2002) Mechanical properties of a fully dense polymer derived ceramic made by a novel pressure casting process. Acta Mater 50(16):4093–4103. https://doi.org/10.1016/S1359-6454(02)00206-9

    Article  CAS  Google Scholar 

  40. Dirè S, Ceccato R, Gialanella S, Babonneau F (1999) Thermal evolution and crystallisation of polydimethylsiloxane–zirconia nanocomposites prepared by the sol–gel method. J Eur Ceram Soc 19(16):2849–2858. https://doi.org/10.1016/S0955-2219(99)00063-1

    Article  Google Scholar 

  41. Liu C, Pan R, Hong C, Zhang X, Han W, Han J, Du S (2016) Effects of Zr on the precursor architecture and high-temperature nanostructure evolution of SiOC polymer-derived ceramics. J Eur Ceram Soc 36(3):395–402. https://doi.org/10.1016/j.jeurceramsoc.2015.09.009

    Article  CAS  Google Scholar 

  42. Kaufman JH, Metin S, Saperstein DD (1989) Symmetry breaking in nitrogen-doped amorphous carbon: Infrared observation of the Raman-active G and D bands. Phys Rev B 39(18):13053–13060

    Article  CAS  Google Scholar 

  43. Bouchet-Fabre B, Marino E, Lazar G, Zellama K, Clin M, Ballutaud D, Abel F, Godet C (2005) Spectroscopic study using FTIR, Raman, XPS and NEXAFS of carbon nitride thin films deposited by RF magnetron sputtering. Thin Solid Films 482(1):167–171. https://doi.org/10.1016/j.tsf.2004.11.166

    Article  CAS  Google Scholar 

  44. Xiao X-c, Li Y-w, Song L-x, Peng X-f, Hu X-f (2000) Structural analysis and microstructural observation of SiCxNy films prepared by reactive sputtering of SiC in N2 and Ar. Appl Surf Sci 156(1):155–160. https://doi.org/10.1016/S0169-4332(99)00493-6

    Article  CAS  Google Scholar 

  45. Bulou S, Le Brizoual L, Miska P, de Poucques L, Hugon R, Belmahi M, Bougdira J (2011) The influence of CH4 addition on composition, structure and optical characteristics of SiCN thin films deposited in a CH4/N2/Ar/hexamethyldisilazane microwave plasma. Thin Solid Films 520(1):245–250. https://doi.org/10.1016/j.tsf.2011.07.054

    Article  CAS  Google Scholar 

  46. Zhao JP, Chen ZY, Yano T, Ooie T, Yoneda M, Sakakibara J (2001) Structural and bonding properties of carbon nitride films synthesized by low energy nitrogen-ion-beam-assisted pulsed laser deposition with different laser fluences. J Appl Phys 89(3):1634–1640. https://doi.org/10.1063/1.1334643

    Article  CAS  Google Scholar 

  47. Besling WFA, Goossens A, Meester B, Schoonman J (1998) Laser-induced chemical vapor deposition of nanostructured silicon carbonitride thin films. J Appl Phys 83(1):544–553. https://doi.org/10.1063/1.366669

    Article  CAS  Google Scholar 

  48. Jedrzejowski P, Cizek J, Amassian A, Klemberg-Sapieha JE, Vlcek J, Martinu L (2004) Mechanical and optical properties of hard SiCN coatings prepared by PECVD. Thin Solid Films. https://doi.org/10.1016/S0040-6090(03)01057-5

    Article  Google Scholar 

  49. Silva JA, Quoizola S, Hernandez E, Thomas L, Massines F (2014) Silicon carbon nitride films as passivation and antireflective coatings for silicon solar cells. Surf Coat Technol. https://doi.org/10.1016/j.surfcoat.2014.01.037

    Article  Google Scholar 

  50. Ay F, Aydinli A (2004) Comparative investigation of hydrogen bonding in silicon based PECVD grown dielectrics for optical waveguides. Opt Mater 26(1):33–46. https://doi.org/10.1016/j.optmat.2003.12.004

    Article  CAS  Google Scholar 

  51. Sujith R, Kousaalya AB, Kumar R (2011) Coarsening induced phase transformation of hafnia in polymer-derived Si–Hf–C–N–O ceramics. J Am Ceram Soc 94(9):2788–2791. https://doi.org/10.1111/j.1551-2916.2011.04719.x

    Article  CAS  Google Scholar 

  52. Ushakov SV, Navrotsky A, Yang Y, Stemmer S, Kukli K, Ritala M, Leskelä MA, Fejes P, Demkov A, Wang C, Nguyen B-Y, Triyoso D, Tobin P (2004) Crystallization in hafnia- and zirconia-based systems. Phys Status Solidi (b). https://doi.org/10.1002/pssb.200404935

    Article  Google Scholar 

  53. Yamaoka M, Murakami H, Miyazaki S (2003) Diffusion and incorporation of Zr into thermally grown SiO2 on Si(1 0 0). Appl Surf Sci 216(1):223–227. https://doi.org/10.1016/S0169-4332(03)00428-8

    Article  CAS  Google Scholar 

  54. Kleebe H-J, Nonnenmacher K, Ionescu E, Riedel R (2012) Decomposition-coarsening model of SiOC/HfO2 ceramic nanocomposites upon isothermal anneal at 1300°C. J Am Ceram Soc 95(7):2290–2297. https://doi.org/10.1111/j.1551-2916.2012.05227.x

    Article  CAS  Google Scholar 

  55. Ikarashi N, Watanabe K, Masuzaki K, Nakagawa T, Miyamura M (2006) The influence of incorporated nitrogen on the thermal stability of amorphous HfO2 and Hf silicate. J Appl Phys 100(6):063507. https://doi.org/10.1063/1.2353262

    Article  CAS  Google Scholar 

  56. Garvie RC (1965) The occurrence of metastable tetragonal zirconia as a crystallite size effect. J Phys Chem 69(4):1238–1243. https://doi.org/10.1021/j100888a024

    Article  CAS  Google Scholar 

  57. Nishimura T, Haug R, Bill J, Thurn G, Aldinger F (1998) Mechanical and thermal properties of Si–C–N material from polyvinylsilazane. J Mater Sci 33(21):5237–5241. https://doi.org/10.1023/a:1004440122266

    Article  CAS  Google Scholar 

  58. Patil RN, Subbarao EC (1969) Axial thermal expansion of ZrO2 and HfO2 in the range room temperature to 1400°C. J Appl Crystallogr 2(6):281–288. https://doi.org/10.1107/s0021889869007217

    Article  CAS  Google Scholar 

  59. Mocaer D, Chollon G, Pailler R, Filipuzzi L, Naslain R (1993) Si-C-N ceramics with a high microstructural stability elaborated from the pyrolysis of new polycarbosilazane precursors. J Mater Sci 28(11):3059–3068. https://doi.org/10.1007/bf00354712

    Article  CAS  Google Scholar 

  60. Sujith R, Kousaalya AB, Kumar R (2012) Synthesis and phase stability of precursor derived HfO2/Si–C–N–O nanocomposites. Ceram Int 38(2):1227–1233. https://doi.org/10.1016/j.ceramint.2011.08.053

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shantanu K. Behera.

Additional information

Handling Editor: N. Ravishankar.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anand, R., Nayak, B.B. & Behera, S.K. Effect of zirconium on precursor chemistry, phase stability, and oxidation of polyvinylsilazane-derived SiCN ceramics. J Mater Sci 57, 939–954 (2022). https://doi.org/10.1007/s10853-021-06780-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-06780-7

Navigation