Skip to main content
Log in

Fascinating Physic-Chemical Properties and Resourceful Applications of Selected Cadmium Nanomaterials

  • Topical Review
  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Nanomaterials are the leading edge for the rapid development of fascinating nanotechnology. The design of nanostructures with favoured shape, particle size and structure are the most important and interesting fields of nanoscience. Recently inorganic nanomaterials have attracted much interest for their novel physical, chemical, optical, electrical and magnetic properties etc, and also showed their wide variety of potential applications in nanoscale devices. In the past decade, nano semiconductors of groups II–VI have defined wide interest in many areas of physical, chemical and biochemical sciences etc. They possess high chemical stability, along luminescence life time and offered the possibility of controlling the surface functionality. This review deals with cadmium sulfide and cadmium oxide nanoparticles with different kinds of synthesis methods, crystallinity–morphology–shape, compositions, functional groups and stretching vibrations of CdS and CdO. Owing to its properties cadmium nanoparticles have showed tremendous vibrational applications in photodetectors, sensors, photocatalysts, solar cells etc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. M.S. Niasari, M.R.L. Estarki, F. Davar, Synthesis, thermal stability and photoluminescence of new cadmium sulphide/organic composite, hollow sphere nanostructures. Inorg. Chim. Acta 362, 3677–3683 (2009)

    Article  CAS  Google Scholar 

  2. H. Sharma, N. Rawal, B.B. Mathew, The characteristics, toxicity and effects of cadmium. Int. J. Nanotechnol. Nanosci. 3, 1–9 (2015)

    Google Scholar 

  3. T. Joseph, M.S. Haney Jr., Cadmium and cadmium compounds. Development support document. Final Sept. 2, 1–83 (2016)

    Google Scholar 

  4. K.P. Acharya, Photocurrent spectroscopy of CdS/plastic, CdS/glass, and ZnTe/GaAs hetero-pairs formed with pulsed-laser deposition. Ph.D. Thesis, Bowling Green State University (2009)

  5. R. Bhattacharya, S. Saha, Growth of CdS nanoparticles by chemical method and its characterization. Pramana-J. Phys. 71, 187–192 (2008)

    Article  CAS  Google Scholar 

  6. A. Dumbrava, C. Badea, G. Prodan, V. Ciupina, Synthesis and characterization of cadmium sulfide obtained at room temperature. Chalcogenide Lett. 7, 111–118 (2010)

    CAS  Google Scholar 

  7. V. Singh, P.K. Sharma, P. Chauhan, Synthesis of CdS nanoparticles with enhanced optical properties. Mater. Charact. 62, 43–52 (2011)

    Article  CAS  Google Scholar 

  8. M. Knudson, Y. Gupta, A. Kunz: Picosecond electronic spectroscopy to determine the transformation mechanism for the pressure-induced PhaseTransition in shocked CdS. Sandia National Labs., Albuquerque, NM (US); Sandia National Labs., Livermore, CA (1999)

  9. R. Banerjee, R. Jayakrishnan, P. Ayyub, Effect of the size-induced structural transformation on the band gap in CdS nanoparticles. J. Phys. Condens. Matter 12, 10647–10654 (2000)

    Article  CAS  Google Scholar 

  10. E. Roduner, Nanoscopic Materials: Size-Dependent Phenomena. (RSC, Cambridge, 2006)

    Google Scholar 

  11. Y. Gogotsi, Nanomaterials Handbook (CRC Taylor, & Francis Group, LLC, Boca Raton, 2006)

    Book  Google Scholar 

  12. A.B. El-Bially, R. Seoudi, W. Eisa, A.A. Shabaka, S.I. Soliman, R.K.A. El-Hamid, R.A. Ramadan, Preparation, characterization and physical properties of CdS nanoparticles with different sizes. J. Appl. Sci. Res. 8, 676–685 (2012)

    CAS  Google Scholar 

  13. Y. Wang, N. Herron, Quantum size effects on the exciton energy of CdS clusters. Phys. Rev. B 42, 7253–7255 (1990)

    Article  CAS  Google Scholar 

  14. P.P. Favero, M.d. Souza-Parise, J.L.R. Fernandez, R. Miotto, A.C. Ferraz, Surface properties of CdS nanoparticles. Braz. J. Phys. 36, 1032–1034 (2006)

    Article  CAS  Google Scholar 

  15. P.H. Jefferson, S.A. Hatfield, T.D. Veal, P.D.C. King, C.F. Mc Connville, J.Z. Perez, V.M. Sanjose, Bandgap and effective mass of epitaxial cadmium oxide. Appl. Phys. Lett. 92, 022101 (2008)

    Article  CAS  Google Scholar 

  16. A. Tadjarodi, M. Imani, H. Kerdari, K. Bijanzad, D. Khaledi, M. Rad, Preparation of CdO rhombus-like nanostructure and its photocatalytic degradation of azo dyes from aqueous solution. Nanomater. Nanotechnol. 4, 1–10 (2014)

    Article  CAS  Google Scholar 

  17. A. Heidari, C. Brown, Study of composition and morphology of cadmium oxide (CdO) nanoparticles for eliminating cancer cells. Nanomed. Res. J. 2(5), 1–20 (2015)

    Google Scholar 

  18. K. Manickathai, S. Kasi viswanathan, M. Alagar, Synthesis and characterization of CdS and CdO nanoparticles. Indian J. Pure Appl. Phys. 46, 561–564 (2008)

    CAS  Google Scholar 

  19. K. Rayapa Reddy, P. Anila, G. Srinivasa Rao, P.V.S. Sai Ram, K. Nirmala Jyothi, K. Geetha Bhavani, Green synthesis, morphological and spectral properties of CdS nanoparticles. Indian J. Res. Pharm. Biotechnol. 4(6), 271–273 (2016)

    Google Scholar 

  20. A.K. Barve, S.M. Gadegone, M.R. Lanjewar, R.B. Lanjewar, Synthesis and characterization of CdO nanomaterial and their photocatalytic activity. Int. J. Recent Innov. Trends Comput. Commun. 2(9), 2806–2810 (2014)

    Google Scholar 

  21. B. Nidhi Gupta, Pal, The synthesis, structure, optical and photocatalytic properties of silica-coated cadmium sulfide nanocomposites of different shapes. J. Colloid Interface Sci. 368, 250–256 (2012)

    Article  PubMed  CAS  Google Scholar 

  22. C.H. Venkata Reddy, B. Babu, Jaesool Shim.: Synthesis, optical properties and efficient photocatalytic activity of CdO/ZnOhybrid nanocomposite. J. Phys. Chem. Solids 112, 20–28 (2018)

    Article  CAS  Google Scholar 

  23. H. Emadi, M.S. Niasari, A. Sobhani, Synthesis of some transition metal (M: 25Mn, 27Co, 28Ni, 29Cu, 30Zn, 47Ag, 48Cd) sulfide nanostructures by hydrothermal method. Adv. Colloid Interface Sci. 246, 52–74 (2017)

    Article  CAS  PubMed  Google Scholar 

  24. M.R.L. Estarki, H. Bastami, F. Davar, Synthesis of one-dimensional MS (M = Zn, Cd, and Pb) nanostructure by MAA assisted hydrothermal method: a review. Polyhedron 127, 107–125 (2017)

    Article  CAS  Google Scholar 

  25. Y. Zhang, H. Cao, J. Zhang, B. Xia, Synthesis of LiNi0.6Co0.2Mn0.2O2 cathode material by a carbonate co-precipitation method and its electrochemical characterization. Solid State Ionics 177, 3303–3307 (2006)

    Article  CAS  Google Scholar 

  26. T.H. Cho, Y. Shiosaki, H. Noguchi, Preparation and characterization of layered LiMn1/3Ni1/3Co1/3O2 as a cathode material by an oxalate co-precipitation method. J. Power Sources 159, 1322–1327 (2006)

    Article  CAS  Google Scholar 

  27. M.J. Godinho, R.F. Goncalves, L.P.S. Santos, J.A. Varela, E. Longo, E.R. Leite, Room temperature co-precipitation of nanocrystalline CeO2 and Ce0.8Gd0.2O1.9–δ powder. Mater. Lett. 61, 1904–1907 (2007)

    Article  CAS  Google Scholar 

  28. A.R. West, Solid State Chemistry and its applications (Wiely, New Delhi, 2005)

    Google Scholar 

  29. A.B. Gaikwad, S.C. Navale, V. Samuel, A.V. Murugan, V. Ravi, A co-precipitation technique to prepare BiNbO4, MgTiO3 and Mg4Ta2O9 powders. Mater. Res. Bull. 41, 347–353 (2006)

    Article  CAS  Google Scholar 

  30. M.F. Zawrah, H. Hamaad, S. Meky, Synthesis and characterization of nano MgAl2O4 spinel by the co-precipitated method. Ceram. Inter. 33(6), 969–978 (2007)

    Article  CAS  Google Scholar 

  31. G. Xu, X. Zhang, W. He, H. Liu, H. Li, R.I. Boughton, Preparation of highly dispersed YAG nano-sized powder by co-precipitation method. Mater. Lett. 60(7), 962–965 (2006)

    Article  CAS  Google Scholar 

  32. C.J. Brinker, G.W. Scherer, Sol-Gel Science: The Physics and the Chemistry of Sol-Gel Processing (Academic Press, Inc., London, 1990)

    Google Scholar 

  33. L.L. Hench, J.K. West, The sol-gel processes. Chem. Rev. 90(1), 33–72 (1990)

    Article  CAS  Google Scholar 

  34. L.J. Fu, H. Liu, C. Li, Y.P. Wu, E. Rahm, R. Holze, H.Q. Wu, Electrode materials for lithium secondary batteries prepared by sol-gel methods. Prog. Mater Sci. 50, 881–928 (2005)

    Article  CAS  Google Scholar 

  35. H. Liu, Y.P. Wu, E. Rahm, R. Holze, H.Q. Wu, J. Solid State Elelrochem. 8, 450466 (2004)

    Google Scholar 

  36. L. Predoana, A. Barau, M. Zaharescu, H. Vassilchina: N. Velinova, B. Banov, A. Mornchilov, J. Eur. Ceram. Soc. 27, 1137–1142 (2007)

    Article  CAS  Google Scholar 

  37. Q. Chena, J. Wang, Z. Tang, W. Hea, H. Shao, J. Zhang, Electrochemical performance of the carbon coated Li3V2 (PO4)3 cathode material synthesized by a sol-gel method. Electrochim. Acta 52(16), 5251–5257 (2007)

    Article  CAS  Google Scholar 

  38. D.H. Chen, X.R. He, Synthesis of nickel ferrite nanoparticles by sol gel method. Mater. Res. Bull. 36, 1369–1377 (2001)

    Article  CAS  Google Scholar 

  39. B.J. Hwang, R. Santhanam, D.G. Liu, Characterization of nanoparticles of LiMn2O4 synthesized by citric acid sol–gel method. J. Power Sources 97–98, 443–446 (2001)

    Article  Google Scholar 

  40. Y.D. Zhong, X.B. Zhao, G.S. Cao, J.P. Tu, T.J. Zhu, Characterization of particulate sol-gel synthesis of LiNi0.8Co0.2O2 via maleic acid assistance with different solvents. J. Alloys Compd. 420, 298–305 (2006)

    Article  CAS  Google Scholar 

  41. J.T. Son, H.G. Kim, New investigation of fluorine-substituted spinel LiMn2O4–xFx by using sol-gel process. J. Power Sources 147, 220–226 (2005)

    Article  CAS  Google Scholar 

  42. B. Durga, S. Raziya, S.G. Rajamahanti, B. Govindh, K.V. Raju, N. Annapurna, Synthesis and characterization of CdS nanoparticles using Artabotrys hexapetalus leaf extract as capping agent. Der Pharma Chem. 9(14), 157–162 (2017)

    CAS  Google Scholar 

  43. D.O. Plaza, C. Gallardo, Y.D. Straub, D. Bravo, J.M. Perez–Donoso, Biological synthesis of fluorescent nanoparticles by cadmium and tellurite resistant Antarctic bacteria: exploring novel natural nanofactories. Microb. Cell Fact. 15(76), 1–11 (2016)

    Google Scholar 

  44. A.S. Pawar, S.S. Garje, N. Revaprasadu, Synthesis and characterization of CdS nanocrystallites and OMWCNT-supported cadmium sulfide composite and their photocatalytic activity under visible light irradiation. Mater. Chem. Phys. 183, 366–374 (2016)

    Article  CAS  Google Scholar 

  45. C.H. Ashok, K. Venkateswara Rao, C.H. Shilpa Chakra, V. Rajendar, Structural properties of CdS nanoparticles for Solar cell applications. Int. J. Pure Appl. Sci. Technol. 23(1), 8–12 (2014)

    Google Scholar 

  46. F. Michael Raj, A. Jeya Rajendran, Synthesis and characterization of cadmium sulfide nanoparticles for the applications of dye sensitized solar cell. Int J. Innov. Res. Sci. Eng. Technol. 4(1), 56–60 (2015)

    Google Scholar 

  47. P. Bansal, N. Jaggi, S.K. Rohilla, Green synthesis of CdS nanoparticles and effect of capping agent concentration on crystallite size. Res. J. Chem. Sci. 2(8), 69–71 (2012)

    CAS  Google Scholar 

  48. D. Ayodhya, G. Veerabhadram, One-pot green synthesis, characterization, photocatalytic, sensing and antimicrobial studies of Calotropis gigantea leaf extract capped CdS NPs. Mater. Sci. Eng. B 225, 33–44 (2017)

    Article  CAS  Google Scholar 

  49. K.R. Kanude, P. Jain, Biosynthesis of CdS nanoparticles using Murraya Koenigii leaf extract and their biological studies. Int. J. Sci. Res. Multidiscip. Stud. 3(7), 5–10 (2017)

    Google Scholar 

  50. S. Kondawar, R. Mahore, A. Dahegaonkar, S. Agrawal, Electrical conductivity of cadmium oxide nanoparticles embedded polyaniline nanocomposites. Adv. Appl. Sci. Res. 2(4), 401–406 (2011)

    CAS  Google Scholar 

  51. K.M. Prabu, P.M. Anbarasan, S. Janarthanan, G. Sivakumar, Preparation and characterization of CdO nanoparticles by precipitation method. Int. J. Sci. Res. Dev. 2(11), 368–370 (2015)

    CAS  Google Scholar 

  52. K.M. Prabu, P.M. Anbarasan, S. Janarthanan, Preparation and characterization of CdO/PVA nanoparticles by precipitation method. Int. J. Rev. Res. Appl. Sci. Eng. 5, 40–43 (2013)

    Google Scholar 

  53. R. Santhi, C. Shanthi, M. Sathya, K. Pushpanathan, Optical properties and anti bacterial activity of CdO-Zn nanoparticles. J. Chem. Pharm. Res. 8(9), 249–259 (2016)

    CAS  Google Scholar 

  54. S. Sagadevan, A. Veeralakshmi, Synthesis, structural, and dielectric characterization of cadmium oxide nanoparticles. Int. J. Chem. Mol. Eng. 8(12), 1492–1495 (2014)

    Google Scholar 

  55. A. Savale, S. Ghotekar, S. Pansambal, O. Pardeshi, Green synthesis of fluorescent CdO nanoparticles using leucaena leucocephalla L. extract and their biological activities. J. Bact. Mycol. 5, 1–5 (2017)

    Google Scholar 

  56. P.Y. Silvert, K. Tekaia Elhsissen, Synthesis of monodisperse submicronic gold particles by the polyol process. Solid State Ionics 82, 53–60 (1995)

    Article  CAS  Google Scholar 

  57. B. Wiley, Y. Sun, B. Mayers, Y. Xia, Shape-controlled synthesis of metal nanostructures: the case of silver. Chem. Eur. J. 11, 454–463 (2005)

    Article  CAS  PubMed  Google Scholar 

  58. Y. Wang, X. Xuchuan, X. Jiang, Y. Xia, A solution-phase, precursor route to polycrystalline SnO2 nanowires that can be used for gas sensing under ambient conditions. J. Am. Chem. Soc. 125, 16176–16177 (2003)

    Article  CAS  PubMed  Google Scholar 

  59. C. Feldmann, H.O. Jungk, Polyol mediated preparation of nanoscale oxide particles. Angew. Chem. Int. Ed. 40, 359 (2001)

    Article  CAS  Google Scholar 

  60. L. Poul, S. Arnmar, N. Jouini, F. Fievet, Synthesis of inorganic compounds (metal, oxide and hydroxide) in polyol medium: a versatile route related to the Sol-Gel process. J. Sol-gel Sci. Technol. 26, 261–265 (2003)

    Article  CAS  Google Scholar 

  61. S. Ammar, N. Jouini, F. Fievet, O. Stephan, C. Marhic, M. Richard, F. Villain, C.H. Cartier dit Moulin, S. Brice, P.H. Sainctavit, Influence of the synthesis parameters on the cationic distribution of ZnFe2O4 nanoparticles obtained by forced hydrolysis in polyol medium. J. Non-Cryst. Solids 345, 346, 658–662 (2004)

    Article  CAS  Google Scholar 

  62. C. Feldmann, Preparation of nanoscale pigment particles. Adv. Mater. 13(17), 1301–1303 (2001)

    Article  CAS  Google Scholar 

  63. S. Ammar, A. Helfen, N. Jouini, F. Fievet, L. Rosenman, F. Villain, P. Molinie, M. Danot, Magnetic properties of ultrafine cobalt ferrite particles synthesized by hydrolysis in a polyol medium. J. Mater. Chem. 11, 186–192 (2001)

    Article  CAS  Google Scholar 

  64. B.D. Cullity, S.R. Stock, S. Stock, Elements of X-Ray Diffraction, 3rd Ed. (Prentice Hall, New York, 2001)

    Google Scholar 

  65. H.P. Klug, L.E. Alexander, X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials (Wiley, New York, 1954)

    Google Scholar 

  66. K.F. Al-Samarrai, O.H. Al-Obeidi, M.S. Al-Doori, Analytical study of electrode cadmium oxide nanoparticles. Int. J. Sci. Technol. Manage 4(1), 199–208 (2015)

    Google Scholar 

  67. A.M. Mostafa, S.A. Yousef, W.H. Eisa, M.A. Ewaida, E.A. Al-Ashkar, Synthesis of cadmium oxide nanoparticles by pulsed laser ablation in liquid environment. Optik 144, 679–684 (2017)

    Article  CAS  Google Scholar 

  68. P. Rodriguez-Fragoso, Gonzalez de la Cruz, G., S.A. Tomas, O. Zelaya-Angel, Optical characterization of CdS semiconductor nanoparticles capped with starch. Appl. Surf. Sci. 257, 581–584 (2010)

    Article  CAS  Google Scholar 

  69. G.M. Dharne, J. Yaseen, P.B. Sable, Synthesis and characterization of CdS nanoparticles for solar cell application. Int. Res. J. Sci. Eng. A4, 7–11 (2018)

    Google Scholar 

  70. U. Jabeen, S.M. Shah, N. Hussain, F.E. Alam, A. Ali, A. khan, S.U. Khan, Synthesis, characterization, band gap tuning and applications of Cd doped ZnS nanoparticles in hybrid solar cells. J. Photochem. Photobiol. A 325, 1–31, (2016)

    Article  CAS  Google Scholar 

  71. A.N. Abd, M.F. Al-Marjani, Z.A. Kadham, Antibacterial activity of cadmium oxide nanoparticles synthesized by chemical method. J. Multidiscip. Eng. Sci. Technol. 3(6), 5007–5011 (2016)

    Google Scholar 

  72. C. Malarkodi, S. Rajeshkumar, K. Paulkumar, M. Vanaja, G. Gnanajobitha, G. Annadurai, Biosynthesis and antimicrobial activity of semiconductor nanoparticles against oral pathogens. Bioinorg. Chem. Appl. (2014). https://doi.org/10.1155/2014/347167

    Article  PubMed  PubMed Central  Google Scholar 

  73. L. Wang, S. Chen, Y. Ding, Q. Zhu, N. Zhang, S. Yu, Biofabrication of morphology improved cadmium sulfide nanoparticles using Shewanella oneidensis bacterial cells and ionic liquid: for toxicity against brain cancer cell lines. J. Photochem. Photobiol. B 178, 424–427 (2018)

    Article  CAS  PubMed  Google Scholar 

  74. A. Heidari, Anti-cancer effect of UV irradiation at presence of cadmium oxide (CdO) nanoparticles on DNA of cancer cells: a photodynamic therapy study. iMedPub J. 4, 14 (2016)

    Google Scholar 

  75. M.B. Askari, Z.T. Banizi, S. Soltani, M. Seif, Comparison of optical properties and photocatalytic behavior of TiO2/MWCNT, CdS/MWCNT and TiO2/CdS/MWCNT nanocomposites. Optik 157, 230–239 (2018)

    Article  CAS  Google Scholar 

  76. A.K. Barve, S.M. Gadegone, M.R. Lanjewar, R.B. Lanjewar, Synthesis, characterization and photocatalytic capability of CdO Nanoparticle for methyl red. Int. J. Eng. Res. Appl. 15, 35–38, (2014)

    Google Scholar 

  77. Z. Jing, L. Tan, F. Li, J. Wang, Y. Fu, Q. Li, Photocatalytic and antibacterial activities of CdS nanoparticles prepared by solvothermal method. Indian J. Chem. 52A, 57–62 (2013)

    CAS  Google Scholar 

  78. L. Keerthana, C. Sakthivel, I. Prabha, MgO-ZrO2 mixed nanocomposites: fabrication methods and applications. Mater. Today. Sustain (2019). https://doi.org/10.1016/j.mtsust.2019.100007

    Article  Google Scholar 

  79. C. Sakthivel, L. Keerthana, I. Prabha, Current status of platinum based nanoparticles: physicochemical properties and selected applications—a review. Johns Matthey Technol. Rev. (2019). https://doi.org/10.1595/205651319X15498900266305

    Article  Google Scholar 

  80. S. Mangala Devi, A. Nivetha, I. Prabha: Superparamagnetic properties and significant applications of iron oxide nanoparticles for astonishing efficacy-a review, J. Supercond. Nov. Magn. (2018). https://doi.org/10.1007/s10948-018-4929-8

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Prabha.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nivetha, A., Mangala Devi, S. & Prabha, I. Fascinating Physic-Chemical Properties and Resourceful Applications of Selected Cadmium Nanomaterials. J Inorg Organomet Polym 29, 1423–1438 (2019). https://doi.org/10.1007/s10904-019-01141-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-019-01141-z

Keywords

Navigation