Skip to main content
Log in

Superparamagnetic Properties and Significant Applications of Iron Oxide Nanoparticles for Astonishing Efficacy—a Review

  • Review Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

This paper reviewed the comprehensive literature survey on the physical, chemical, and the catalytic properties and applications of iron oxide nanoparticles. In recent years, iron oxide has made a versatile progress due to its outstanding magnetic property. The average crystallite size was reported in previous literatures in the range of 10–45 nm using Scherrer’s formula. The powder morphology was found to deliberate quasi-spherical and predominantly spherical shape. The specific surface area as measured by N2 adsorption BET isotherm was reported in the range of 17.6–26.21 m2/g. Depending on the synthesis pathway there was, an inverse or normal spinel structure could be achieved. X-ray diffraction analysis revealed the crystallite size in the range between 8 and 42 nm. Fourier transform infrared spectroscopy reported the changes in functional group, stretching vibrations in the iron oxide nanoparticles. Scanning electron microscopy analysis showed most of Fe3O4 nanoparticles were in spherical morphology with the particle size range between 10 and 26 nm. Vibrating sample magnetometer reported the magnetization value for Fe3O4 nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Atkins, P.W., Overton, T.L., Rourke, J.P., Weller, M.T., Armstrong, F. A.: Inorganic Chemistry, 6th Edition. Oxford University Press, Great Britain (2014)

  2. Hao, R., Xing, R.J., Xu, Z.C., Hou, Y.L., Gao, S., Sun, S.H.: Synthesis, functionalization, and biomedical applications of multifunctional magnetic nanoparticles. Adv. Mater. 22, 2729–2742 (2010)

    Google Scholar 

  3. Dave, S.R., Gao, X.H.: Monodisperse magnetic nanoparticles for biodetection, imaging, and drug delivery: a versatile and evolving technology. WIREs Nanomed. Nanobiotechnol. 1, 583–609 (2009)

    Google Scholar 

  4. Krishnan, K.M., Pakhomov, A.B., Bao, Y., Blomqvist, P., Chun, Y., Gonzals, M., Giffin, K., Ji, X., Roberts, B.K.: Nanomagnetism and spin electronics: materials, microstructure and novel properties. J. Mater. Sci. 41, 793–815 (2006)

    ADS  Google Scholar 

  5. Singh, V., Banerjee, V., Sharma, M.: Dynamics of magnetic nanoparticle suspensions. J. Phys. D. Appl. Phys. 42, 245006 (2009)

    ADS  Google Scholar 

  6. Hansen, M.F., Jonsson, P.E., Nordblad, P., Svedlindh, P.: Critical dynamics of an interacting magnetic nanoparticle system. J. Phys. Condens. Matter. 14, 4901–4914 (2002)

    ADS  Google Scholar 

  7. Guo, G.Y., Wang, Y.K., Chen, Y.Y.: Ab initio studies of the electronic structure and magnetic properties of bulk and nano-particle CeCo2. J. Magn. Magn. Mater. 272, e1193–e1194 (2004)

    ADS  Google Scholar 

  8. Dutta, P., Seehra, M.S., Thota, S., Kumar, J.: A comparative study of the magnetic properties of bulk and nanocrystalline Co3O4. J. Phys. Condens. Matter. 20, 015218 (2008)

    ADS  Google Scholar 

  9. Cornell, R.M., Schwertmann, U.: The iron oxides: structures, properties, reactions, occurrences and uses. Wiley, Weinheim (2003)

    Google Scholar 

  10. Wu, W., Xiao, X.H., Zhang, S.F., Zhou, J.A., Fan, L.X., Ren, F., Jiang, C.Z.: Large-scale and controlled synthesis of iron oxide magnetic short nanotubes: shape evolution, growth mechanism, and magnetic properties. J. Phys. Chem. C. 114(39), 16092–16103 (2010)

    Google Scholar 

  11. Zhang, Z., Boxall, C., Kelsall, G.H.: Photoelectrophoresis of colloidal iron oxides: 1. Hematite (α-Fe2O3). Colloids Surf. A Physicochem. Eng. Asp. 73, 145–163 (1993)

    Google Scholar 

  12. Wu, W., He, Q.G., Jiang, C.Z.: Magnetic iron oxide nanoparticles: synthesis and surface functionalization strategies. Nanoscale Res. Lett. 3, 397–415 (2008)

    ADS  Google Scholar 

  13. Gupta, A.K., Gupta, M.: Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials. 26, 3995–4021 (2005)

    Google Scholar 

  14. Kim, Y.S., Kim, Y.H.: Application of ferro-cobalt magnetic fluid for oil sealing. J. Magn. Magn. Mater. 267, 105–110 (2003)

    ADS  Google Scholar 

  15. Raj, K., Moskowitz, R.: A review of damping applications of ferrofluids. Trans. Magn. 16, 358–363 (2002)

    ADS  Google Scholar 

  16. Schwertmann, U., Cornell, R.M.: The iron oxides: structure, properties, reactions, occurrences and uses, 2nd edn. WILEY-VCH, Weinheim (2003)

    Google Scholar 

  17. Schwertmann, U., Cornell, R.M.: Iron oxides in the laboratory. Wiley-VCH, Wienheim (2000)

    Google Scholar 

  18. Lu, A.H., Salabas, E.L., Schuth, F.: Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew. Chem. Int. Ed. Engl. 46, 1222–1244 (2007)

    Google Scholar 

  19. Sun, S.H., Zeng, H.: Size-controlled synthesis of magnetite nanoparticles. J. Am. Chem. Soc. 124, 8204–8205 (2002)

    Google Scholar 

  20. Wang, Z.L.: Transmission electron microscopy of shape-controlled nanocrystals and their assemblies. J. Phys. Chem. B. 104, 1153–1175 (2000)

    Google Scholar 

  21. Xie, J., Xu, C.J., Xu, Z.C., Hou, Y.L., Young, K.L., Wang, S.X., Pourmond, N., Sun, S.H.: Linking hydrophilic macromolecules to monodisperse magnetite (Fe3O4) nanoparticles via trichloro-s-triazine. Chem. Mater. 18, 5401–5403 (2006)

    Google Scholar 

  22. Hou, Y.L., Gao, S., Ohta, T., Kondoh, H.: Linking hydrophilic macromolecules to monodisperse magnetite (Fe3O4) nanoparticles via trichloro-s-triazine. Eur. J. Inorg. Chem. 2004, 1169–1173 (2004)

    Google Scholar 

  23. Qi, H.P., Chen, Q.W., Wang, M.S., Wen, M.H., Xiong, J.: Study of self-assembly of octahedral magnetite under an external magnetic field. J. Phys. Chem. C. 113, 17301–17305 (2009)

    Google Scholar 

  24. Yang, H.T., Ogawa, T., Hasegawa, D., Takahashi, M.: Synthesis and magnetic properties of monodisperse magnetite nanocubes. J. Appl. Phys. 103, 07d526–07d529 (2008)

    Google Scholar 

  25. Karthikeyan, B., Loganathan, B.: Rapid green synthetic protocol for novel trimetallic nanoparticles. J. Nanopart. 2013, 1–8 (2013)

    Google Scholar 

  26. Zhou, J., Ao, J., Xia, Y., Xiong, H.: Stable photoluminescent ZnO@Cd(OH)2 core–shell nanoparticles synthesized via ultrasonication-assisted sol–gel method. J. Colloid Interface Sci. 393, 80–86 (2013)

    ADS  Google Scholar 

  27. Lehui, L., Kelong, A., Yukihiro, O.: Environmentally friendly synthesis of highly monodisperse biocompatible gold nanoparticles with urchin-like shape. Langmuir. 24, 1058–1063 (2008)

    Google Scholar 

  28. Satyavani, K., Gurudeeban, S., Balasubramanian, T.R.: Biomedical potential of silver nanoparticles synthesized from calli cells of Citrullus colocynthis (L.) Schrad. J. Nanobiotechnol. 9(43), 1–8 (2011)

    Google Scholar 

  29. Liang, J., Li, L., Luo, M., Wang, Y.: Fabrication of Fe3O4 octahedra by a triethanolamine-assisted hydrothermal process. Cryst. Res. Technol. 46, 95–98 (2011)

    Google Scholar 

  30. Alcala, M.D., Criado, J.M., Real, C.: Synthesis of nanocrystalline magnetite by mechanical alloying of iron and hematite. J. Mater. Sci. 39, 2365–2370 (2004)

    ADS  Google Scholar 

  31. Deepika, H., Jacob, L., Rajender, N.N.: A greener synthesis of core (Fe, Cu)-Shell (Au, Pt, Pd, and Ag) nanocrystals using aqueous vitamin C. ACS Sustain. Chem. Eng. 1, 703–712 (2013)

    Google Scholar 

  32. Roy, S., Das, T.K.: Plant mediated green synthesis of silver nanoparticles-a review. Int. J. Plant Biol. Res. 3, 1044–1055 (2015)

    Google Scholar 

  33. O’Handly, R.C.: Modern magnetic materials: principles and applications. Wiley-VCH, Weinheim (2000)

    Google Scholar 

  34. Ogielski, A.T., Morgenstern, I.: Critical behavior of three-dimensional Ising spin-glass model. Phys. Rev. Lett. 54, 928–931 (1985)

    ADS  Google Scholar 

  35. Saeedi, M.S., Tangestaninejad, S., Moghadam, M., Mirkhani, V., Baltork, I.M., Khosropour, A.R.: Magnetic nanoparticles supported manganese (III) tetrapyridylporphyrin catalyst via covalent interaction: a highly efficient and reusable catalyst for the oxidation of hydrocarbons. Polyhedron. 49, 158–166 (2013)

    Google Scholar 

  36. Zhang, H., Zhu, G.: One-step hydrothermal synthesis of magnetic Fe3O4 nanoparticles immobilized on polyamide fabric. Appl. Surf. Sci. 258, 4952–4959 (2012)

    ADS  Google Scholar 

  37. Farahani, M.M., Movassagh, J., Taghavi, F., Eghbali, P., Salimi, F.: Magnetite-polyoxometalate hybrid nanomaterials: synthesis and characterization. Chem. Eng. J. 184, 342–346 (2012)

    Google Scholar 

  38. Neel, L.: Magnetic properties of ferrite - ferrimagnetism and antiferromagnetism. Ann. Phys. 3, 137–198 (1948)

    Google Scholar 

  39. Joaquin, G., Gloria, S.: The Verwey transition - a new perspective. J. Phys. Condens. Matter. 16, R145–R178 (2004)

    Google Scholar 

  40. Senn, M.S., Loa, I., Wright, J.P., Attfield, J.P.: Electronic orders in the Verwey structure of magnetite. Phys. Rev. B. 85, 125119–1251123 (2012)

    ADS  Google Scholar 

  41. Tilaki, R.M., Iraji zad, A., Mahdavi, S.M.: Stability, size and optical properties of silver nanoparticles prepared by laser ablation in different carrier media. Appl. Phys. A Mater. Sci. Process. 84, 215–219 (2006)

    ADS  Google Scholar 

  42. Rao, C.N.R., Muller, A., Cheetham, A.K.: The chemistry of nanomaterials. WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim (2004)

  43. Tresintsi, S., Simeonidis, K., Vourlias, G., Stavropoulos, G., Mitrakas, M.: Kilogram-scale synthesis of iron oxy-hydroxides with improved arsenic removal capacity: study of Fe(II) oxidation-precipitation parameters. Water Res. 46, 5255–5267 (2012)

    Google Scholar 

  44. Simeonidis, K., Kaprara, E., Samaras, T., Angelakeris, M., Pliatsikas, N., Vourlias, G., Mitrakas, M., Andritsos, N.: Optimizing magnetic nanoparticles for drinking water technology: the case of Cr (VI). Sci. Total Environ. 535, 61–68 (2015)

    ADS  Google Scholar 

  45. Pinakidoua, F., Katsikini, M., Simeonidis, K., Kapraraa, E., Paloura, E.C., Mitrakas, M.: On the passivation mechanism of Fe3O4 nanoparticles during Cr (VI) removal from water: a XAFS study. Appl. Surf. Sci. 360, 1080–1086 (2016)

    ADS  Google Scholar 

  46. Bhunia, P., Kim, G., Baik, C., Lee, H.: A strategically designed porous iron-iron oxide matrix on graphene for heavy metal adsorption. Chem. Commun. 48, 9888–9890 (2012)

    Google Scholar 

  47. Mi, F., Chen, X., Ma, Y., Yin, S., Yuan, F., Zhang, H.: Facile synthesis of hierarchical core-shell Fe3O4@MgAl-LDH@Au as magnetically recyclable catalysts for catalytic oxidation of alcohols. Chem. Commun. 47, 12804–12806 (2011)

    Google Scholar 

  48. Prasad, C., Yuvaraja, G., Venkateswarlu, P.: Biogenic synthesis of Fe3O4 magnetic nanoparticles using Pisum sativum peels extract and its effect on magnetic and methyl orange dye degradation studies. J. Magn. Magn. Mater. 424, 376–381 (2017)

    ADS  Google Scholar 

  49. Cheera, P., Karlapudi, S., Sellola, G., Ponneri, V.: A facile green synthesis of spherical Fe3O4 magnetic nanoparticles and their effect on degradation of methylene blue in aqueous solution. J. Mol. Liq. 221, 993–998 (2016)

    Google Scholar 

  50. Lua, T., Wanga, J., Yina, J., Wanga, A., Wanga, X., Zhanga, T.: Surfactant effects on the microstructures of Fe3O4 nanoparticles synthesized by microemulsion method. Colloids Surf. A Physicochem. Eng. Asp. 436, 675–683 (2013)

    Google Scholar 

  51. Yong, Y., Bai, Y., Li, Y., Lin, L., Cui, Y., Xia, C.: Preparation and application of polymer-grafted magnetic nanoparticles for lipase immobilization. J. Magn. Magn. Mater. 320, 2350–2355 (2008)

    ADS  Google Scholar 

  52. Cai, Y., Shen, Y., Xie, A., Li, S., Wang, X.: Green synthesis of soya bean sprouts-mediated superparamagnetic Fe3O4 nanoparticles. J. Magn. Magn. Mater. 322, 2938–2943 (2010)

    ADS  Google Scholar 

  53. Aslibeiki, B., Kameli, P., Manouchehri, I., Salamati, H.: Strongly interacting superspins in Fe3O4 nanoparticles. Curr. Appl. Phys. 12, 812–816 (2012)

    ADS  Google Scholar 

  54. Sun, J., Lin, C.: Superparamagnetic POT/ Fe3O4 nanoparticle composites with supported Au nanoparticles as recyclable high-performance nanocatalysts. Mater. Today Chem. 5(43–51), (2017)

  55. Silva, V.A.J., Andrade, P.L., Silva, M.P.C., Bustamante, A., De Los Santos Valladares, L., Albino Aguiar, J.: Synthesis and characterization of Fe3O4 nanoparticles coated with fucan polysaccharides. J. Magn. Magn. Mater. 343, 138–143 (2013)

    ADS  Google Scholar 

  56. Yan, Z., Yuan, J., Zhu, G., Zou, Y., Chen, C., Yang, S., Yao, S.: A new strategy based on cholesterol-functionalized iron oxide magnetic nanoparticles for determination of polycyclic aromatic hydrocarbons by high-performance liquid chromatography with cholesterol column. Anal. Chim. Acta. 780, 28–35 (2013)

    Google Scholar 

  57. Shete, P.B., Patil, R.M., Tiwale, B.M., Pawar, S.H.: Water dispersible oleic acid-coated Fe3O4 nanoparticles for biomedical applications. J. Magn. Magn. Mater. 377, 406–410 (2015)

    ADS  Google Scholar 

  58. Cevik, E., Senel, M., Baykal, A., Fatih Abasiyanik, M.: Poly (glycidylmethacrylate-co-vinyl ferrocene)-grafted iron oxide nanoparticles as an electron transfer mediator for amperometric phenol detection. Curr. Appl. Phys. 13, 1611–1619 (2013)

    ADS  Google Scholar 

  59. Ebrahimi Fard, A., Zarepour, A., Zarrabi, A., Shanei, A., Salehi, H.: Synergistic effect of the combination of triethylene-glycol modified Fe3O4 nanoparticles and ultrasound wave on MCF-7 cells. J. Magn. Magn. Mater. 394, 44–49 (2015)

    ADS  Google Scholar 

  60. Aghazadeh, M., Karimzadeh, I., Ganjali, M.R.: Ethylenediaminetetraacetic acid capped superparamagnetic iron oxide (Fe3O4) nanoparticles: a novel preparation method and characterization. J. Magn. Magn. Mater. 439, 312–319 (2017)

    ADS  Google Scholar 

  61. Dhak, P., Kim, M.-K., Lee, J.H., Kim, M., Kim, S.-K.: Linear-chain assemblies of iron oxide nanoparticles. J. Magn. Magn. Mater. 433, 47–52 (2017)

    ADS  Google Scholar 

  62. Bajaj, B., Malhotra, B.D., Cho, S.: Preparation and characterization of bio-functionalized iron oxide nanoparticles for biomedical application. Thin Solid Films. 519, 1219–1223 (2010)

    ADS  Google Scholar 

  63. Zhu, J., He, J., Du, X., Lu, R., Huang, L., Ge, X.: A facile and flexible process of β-cyclodextrin grafted on Fe3O4 magnetic nanoparticles and host–guest inclusion studies. Appl. Surf. Sci. 257, 9056–9062 (2011)

    ADS  Google Scholar 

  64. Xu, Y., Zhuang, L., Lin, H., Shen, H., Li, J.W.: Preparation and characterization of polyacrylic acid coated magnetite nanoparticles functionalized with amino acids. Thin Solid Films. 544, 368–373 (2013)

    ADS  Google Scholar 

  65. Dutta, B., Shetake, N.G., Barick, B.K., Barick, K.C., Pandey, B.N., Priyadarsini, K.I., Hassan, P.A.: pH sensitive surfactant-stabilized Fe3O4 magnetic nanocarriers for dual drug delivery. Colloids Surf. B: Biointerfaces. 162, 163–171 (2018)

    Google Scholar 

  66. Dong, Y., Yang, Z., Sheng, Q., Zheng, J.: Solvothermal synthesis of Ag@Fe3O4 nanosphere and its application as hydrazine sensor. Colloids Surf. A Physicochem. Eng. Asp. 538, 371–377 (2018)

    Google Scholar 

  67. Safari, J., Javadian, L.: Ultrasound assisted the green synthesis of 2-amino-4H-chromene derivatives catalyzed by Fe3O4-functionalized nanoparticles with chitosan as a novel and reusable magnetic catalyst. Ultrason. Sonochem. 22, 341–348 (2015)

    Google Scholar 

  68. Ma, M., Zhang, Y., Guo, Z., Gu, N.: Facile synthesis of ultrathin magnetic iron oxide nanoplates by Schikorr reaction. Nanoscale Res. Lett. 8(16), 1–7 (2013)

    ADS  Google Scholar 

  69. Rahimi, R., Maleki, A., Maleki, S.: Synthesis and characterization of a new magnetic bromochromate hybrid nanomaterial with triethylamine surface modified iron oxide nanoparticles. Chin. Chem. Lett. 25, 919–922 (2014)

    Google Scholar 

  70. Tang, H., Zhang, C., Chang, K., Shangguan, E., Li, B., Chang, Z.: Synthesis of NiS coated Fe3O4 nanoparticles as high-performance positive materials for alkaline nickel-iron rechargeable batteries. Int. J. Hydrog. Energy. 42, 24939–24947 (2017)

    Google Scholar 

  71. Lesbayev, A.B., Elouadi, B., Lesbayev, B.T., Manakov, S.M., Smagulova, G.T., Prikhodko, N.G.: Obtaining of magnetic polymeric fibers with additives of magnetite nanoparticle. Procedia Manuf. 12, 28–32 (2017)

    Google Scholar 

  72. An, P., Zuo, F., Yuan Peng, W., Zhang, J.H., Zheng, Z.H., Ding, X.B., Xing Peng, Y.: Fast synthesis of dopamine-coated Fe3O4 nanoparticles through ligand-exchange method. Chin. Chem. Lett. 23, 1099–1102 (2012)

    Google Scholar 

  73. Atacan, K., Ozacar, M.: Characterization and immobilization of trypsin on tannic acid modified Fe3O4 nanoparticles. Colloids Surf. B: Biointerfaces. 128, 227–236 (2015)

    Google Scholar 

  74. Han, C., Zhu, D., Wu, H., Li, Y., Cheng, L., Hu, K.: TEA controllable preparation of magnetite nanoparticles (Fe3O4 NPs) with excellent magnetic properties. J. Magn. Magn. Mater. 408, 213–216 (2016)

    ADS  Google Scholar 

  75. Rezayan, A.H., Mousavi, M., Kheirjou, S., Amoabediny, G., Ardestani, M.S., Mohammadnejad, J.: Monodisperse magnetite (Fe3O4) nanoparticles modified with water soluble polymers for the diagnosis of breast cancer by MRI method. J. Magn. Magn. Mater. 420, 210–217 (2016)

    ADS  Google Scholar 

  76. Lin, J., Wen, Q., Chen, S., Le, X., Zhou, X., Huang, L.: Synthesis of amine-functionalized Fe3O4@C nanoparticles for laccase immobilization. Int. J. Biol. Macromol. 96, 377–383 (2017)

    Google Scholar 

  77. Liu, Y., Bai, J., Duan, H., Yin, X.: Static magnetic field-assisted synthesis of Fe3O4 nanoparticles and their adsorption of Mn (II) in aqueous solution. Chin. J. Chem. Eng. 25, 32–36 (2017)

    Google Scholar 

  78. Hernandez-Hernandez, A.A., Alvarez-Romero, G.A., Castaneda-Ovando, A., Mendoza-Tolentino, Y., Contreras-Lopez, E., Galan-Vidal, C.A., Paez-Hernandez, M.E.: Optimization of microwave-solvothermal synthesis of Fe3O4 nanoparticles. Coating, modification, and characterization. Mater. Chem. Phys. 205, 113–119 (2018)

    Google Scholar 

  79. Atacana, K., Cakiroglu, B., Ozacar, M.: Covalent immobilization of trypsin onto modified magnetite nanoparticles and its application for casein digestion. Int. J. Biol. Macromol. 97, 148–155 (2017)

    Google Scholar 

  80. Khoee, S., Saadatinia, A., Bafkary, R.: Ultrasound-assisted synthesis of pH-responsive nanovector based on PEG/ chitosan coated magnetite nanoparticles for 5-FU delivery. Ultrason. Sonochem. 39, 144–152 (2017)

    Google Scholar 

  81. Xing, Y., Jin, Y.-Y., Si, J.-C., Peng, M.-L., Wang, X.-F., Chen, C., Cui, Y.-L.: Controllable synthesis and characterization of Fe3O4/Au composite nanoparticles. J. Magn. Magn. Mater. 380, 150–156 (2015)

    ADS  Google Scholar 

  82. Zhu, J., He, J., Du, X., Lu, R., Huang, L., Ge, X.: A facile and flexible process of cyclodextrin grafted on Fe3O4 magnetic nanoparticles and host-guest inclusion studies. Appl. Surf. Sci. 257, 9056–9062 (2011)

    ADS  Google Scholar 

  83. Ghosh, R., Pradhan, L., Devi, Y.P., Meena, S.S., Tewari, R., Kumar, A., Sharma, S., Gajbhiye, N.S., Vatsa, R.K., Pandey, B.N., Ningthoujam, R.S.: Induction heating studies of Fe3O4 magnetic nanoparticles capped with oleic acid and polyethylene glycol for hyperthermia. J. Mater. Chem. 21, 13388–13398 (2011)

    Google Scholar 

  84. Dincer, C.A., Yildiz, N., Aydogan, N., Calimli, A.: A comparative study of Fe3O4 nanoparticles modified with different silane compounds. Appl. Surf. Sci. 318, 297–304 (2014)

    ADS  Google Scholar 

  85. Rahimi, R., Maleki, A., Maleki, S.: Preparation of magnetic fluorochromate hybrid nanomaterials with triphenylphosphine surface modified iron oxide nanoparticles and their characterization. J. Magn. Magn. Mater. 355, 300–305 (2014)

    ADS  Google Scholar 

  86. Izadi, M., Shahrabib, T., Ramezanzadeh, B.: Synthesis and characterization of an advanced layer-by-layer assembled Fe3O4/polyaniline nanoreservoir filled with Nettle extract as a green corrosion protective system. J. Ind. Eng. Chem. 57, 263–274 (2018)

    Google Scholar 

  87. Atacan, K., Cakiroglu, B., Ozacar, M.: Improvement of the stability and activity of immobilized trypsin on modified Fe3O4 magnetic nanoparticles for hydrolysis of bovine serum albumin and its application in the bovine milk. Food Chem. 212, 460–468 (2016)

    Google Scholar 

  88. Thomas, T., Kanotha, B.P., Nijas, C.M., Joy, P.A., Joseph, J.M., Kuthirummal, N., Thachil, E.T.: Preparation and characterization of flexible ferromagnetic nanocomposites for microwave applications. Mater. Sci. Eng. B. 200, 40–49 (2015)

    Google Scholar 

  89. Fu, F., Wang, Q.: Removal of heavy metal ions from wastewaters: a review. J. Environ. Manag. 92(3), 407–418 (2011)

    Google Scholar 

  90. Musyoka, S.M., Ngila, J.C., Moodley, B., Petrik, L., Kindness, A.: Synthesis, characterization, and adsorption kinetic studies of ethylenediamine modified cellulose for removal of Cd and Pb. Anal. Lett. 44(11), 1925–1936 (2011)

    Google Scholar 

  91. Hutchinson, T.C., Meema, K.M.: In: Hutton, M. (ed.) Lead, mercury, cadmium and arsenic in the environment. Wiley, Hoboken (1987)

    Google Scholar 

  92. Ge, F., Li, M.M., Ye, H., Zhao, B.X.: Effective removal of heavy metal ions Cd2+ , Zn2+ , Pb2+ , Cu2+ from aqueous solution by polymer-modified magnetic nanoparticles. J. Hazard. Mater. 211, 366–372 (2012)

    Google Scholar 

  93. Zhao, Y.G., Chen, X.H., Pan, S.D., Zhu, H., Shen, H.Y., Jin, M.C.: Self-assembly of a surface bisphenol A-imprinted core–shell nanoring amino-functionalized superparamagnetic polymer. J. Mater. Chem. A. 1(38), 11648–11658 (2013)

    Google Scholar 

  94. Hasanzadeh, R., Moghadam, P.N., Bahri-Laleh, N., Sillanpää, M.: Effective removal of toxic metal ions from aqueous solutions: 2-bifunctional magnetic nanocomposite base on novel reactive PGMA-MAn copolymer@Fe3O4nanoparticle. J. Colloid Interface Sci. 490, 727–746 (2017)

    ADS  Google Scholar 

  95. Jeong, U., Teng, X., Wang, Y., Yang, H., Xia, Y.: Superparamagnetic colloids: controlled synthesis and niche applications. Adv. Mater. 19, 33–60 (2007)

    Google Scholar 

  96. Krizzova, J., Spanova, A., Rittich, B., Horak, D.: Magnetic hydrophilic methacrylate based polymer microspheres for genomic DNA isolation. J. Chromatogr. A. 1064, 247–253 (2005)

    Google Scholar 

  97. Fan, Q.-L., Neoh, K.-G., Kang, E.-T., Shuter, B., Wang, S.-C.: Solvent-free atom transfer radical polymerization for the preparation of poly(poly(ethyleneglycol) monomethacrylate)-grafted Fe3O4 nanoparticles: synthesis, characterization and cellular uptake. Biomaterials. 28, 5426–5436 (2007)

    Google Scholar 

  98. Bradford, M.M.: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254 (1976)

    Google Scholar 

  99. Sharma, R.K., Agrawal, M., Marshall, F.: Heavy metal contamination of soil and vegetables in suburban areas of Varanasi, India. Ecotoxicol. Environ. Saf. 66, 258–266 (2007)

    Google Scholar 

  100. Park, S.Y., Yoon, J.H., Hong, C.S., Souane, R., Kim, J.S., Matthews, S.E., Vicens, J.: A pyrenyl-appended triazole-based calix[4] arene as a fluorescent sensor for Cd2+ and Zn2+. J. Org. Chem. 73, 8212–8218 (2008)

    Google Scholar 

  101. Plum, L.M., Rink, L., Haase, H.: The essential toxin: impact of zinc on human health. Int. J. Environ. Res. Public Health. 7, 1342–1365 (2010)

    Google Scholar 

  102. Xu, Z., Baek, K.H., Kim, H.N., Cui, J., Qian, X., Spring, D.R., Shin, I., Yoon, J.: Zn2+ triggered amide tautomerization produces a highly Zn2+ selective cell-permeable, and ratiometric fluorescent sensor. J. Am. Chem. Soc. 132, 601–610 (2009)

    Google Scholar 

  103. Xue, L., Liu, C., Jiang, H.: Highly sensitive and selective fluorescent sensor for distinguishing cadmium from zinc ions in aqueous media. Org. Lett. 11, 1655–1658 (2009)

    Google Scholar 

  104. Kim, K.T., Shin, A., Yoon, J.A., Choi, Y., Lee, M.H., Jung, J.H., Park, J.: Sensors Actuators B. 243, 1034–1041 (2017)

    Google Scholar 

  105. Wang, J., Zheng, S., Shao, Y., Liu, J., Xu, Z., Zhu, D.: Amino-functionalized Fe3O4@SiO2 core–shell magnetic nanomaterial as a novel adsorbent for aqueous heavy metals removal. J. Colloid Interface Sci. 349, 293–299 (2010)

    ADS  Google Scholar 

  106. Huang, S.H., Chen, D.H.: Rapid removal of heavy metal cations and anions from aqueous solutions by an amino-functionalized magnetic nano-adsorbent. J. Hazard. Mater. 163, 174–179 (2009)

    Google Scholar 

  107. Jin, S., Park, B.C., Ham, W.S., Pan, L., Young Keun Kim, A.: Physicochemical and engineering aspects. Colloids Surf. A Physicochem. Eng. Asp. 531(133–140), (2017)

  108. Hu, J., Shipley, H.J.: Evaluation of desorption of Pb(II), Cu(II) and Zn(II) from titanium dioxide nanoparticles. Sci. Total Environ. 431, 209–220 (2012)

    ADS  Google Scholar 

  109. Ngah, W.S.W., Hanaflah, M.A.K.M.: Removal of heavy metal ions from wastewater by chemically modified plant wastes as adsorbents: a review. Bioresour. Technol. 99, 3935–3948 (2008)

    Google Scholar 

  110. Khattri, S.D., Singh, M.K.: Removal of malachite green from dye wastewater using neem sawdust by adsorption. J. Hazard. Mater. 167, 1089–1094 (2009)

    Google Scholar 

  111. Mittal, A., Kaur, D., Mittal, J.: Batch and bulk removal of a triarylmethane dye, fast green FCF, from wastewater by adsorption over waste materials. J. Hazard. Mater. 163, 568–577 (2009)

    Google Scholar 

  112. Azad, F.N., Ghaedi, M., Dashtian, K., Hajati, S., Pezeshkpour, V.: Ultrasonically assisted hydrothermal synthesis of activated carbon–HKUST-1-MOF hybrid for efficient simultaneous ultrasound-assisted removal of ternary organic dyes and antibacterial investigation: Taguchi optimization. Ultrason. Sonochem. 31, 383–393 (2016)

    Google Scholar 

  113. Baracca, A., Sgarbi, G., Solaini, G., Lenaz, G.: Rhodamine 123 as a probe of mitochondrial membrane potential: evaluation of proton flux through F 0 during ATP synthesis. Biochim. Biophys. Acta. 1606, 137–146 (2003)

    Google Scholar 

  114. Bagheri, S., Aghaei, H., Ghaedi, M., Asfaram, A., Monajemi, M., Bazrafshan, A.A.: Synthesis of nanocomposites of iron oxide/gold (Fe3O4/Au) loaded on activated carbon and their application in water treatment by using sonochemistry: optimization study. Ultrason. Sonochem. 41, 279–287 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Prabha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Devi, S.M., Nivetha, A. & Prabha, I. Superparamagnetic Properties and Significant Applications of Iron Oxide Nanoparticles for Astonishing Efficacy—a Review. J Supercond Nov Magn 32, 127–144 (2019). https://doi.org/10.1007/s10948-018-4929-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-018-4929-8

Keywords

Navigation