Skip to main content
Log in

Novel Synthesized Benzesulfonamide Nanosized Complexes; Spectral Characterization, Molecular Docking, Molecular Modeling and Analytical Application

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

New series, for sulfa drug complexes, was prepared from Cu(II), Ag(I), Cd(II) and Hg(II) ions. The new sulfisoxazole derivative and its corresponding complexes were fully characterized through all, analytical, spectral and theoretical tools. The mode of bonding, is pentadentate mode, in all complexes, which having bi-central atoms. The coordination number four, was proposed with all complexes, except Cu(II) complex, which has square-pyramidal geometry. XRD patterns and SEM images, introduce, the nanocrystalline nature for all investigated compounds. Molecular modeling, was carried out for all compounds, to modulate the structural forms, the best method execute the aim, was, DFT/B3LYP. Utilizing frontier energy gaps, the following parameters, electronegativity (χ), chemical potential (μ), global hardness (η), global softness (S), global electrophilicity index (ω) and absolute softness (ϭ) were computed. The docking process, was executed from sulfa drug ligand, against pathogen proteins as, 1jm7, 2hq6 and 3lvq, which attributing for, breast, colon and liver tumors, respectively. The computed parameters, among them, the inhibition constant (1.09 KCal/uM), which displayed that, the tested sulfa drug derivative, is considered a promising anti-colon cancer. The antitumor screening against, MCF-7, HEPG-2 and HCT-116cell lines, displays promising results with Hg(II) and Cd(II) complexes covered all cell lines. IC50 values for them were ˂ 4, which considered, best toxic feature against tumor cells. A specific analytical application, was done, upon the use of sulfa drug ligand as an acid- base indicator. This study was carried out versus, different types of titrations, in comparing with referenced indicators (Me.O and Ph.Ph). High conformity in the titration end point, using the proposed indicator with that known, was obtained. It is worthy to note that, the compound achieved the exact end point for weak acid- weak base titration, which is considered a shining spot in the study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. G. Valarmathy, R. Subbalakshmi, Int. J. Pharm. Bio. Sci. 4(2), 1019–1029 (2013)

    CAS  Google Scholar 

  2. R.B.P. Elmes, M. Erby, S.M. Cloonan, S.J. Quinn, D.C. Williams, T. Gunnlaugsson, Chem. Commun. 47, 686–688 (2011)

    Article  CAS  Google Scholar 

  3. A. Massey, Y.-Z. Xu, P. Karran, Curr. Biol. 11, 1142–1146 (2001)

    Article  CAS  PubMed  Google Scholar 

  4. R.R. Coombs, M.K. Ringer, J.M. Blacquire, J.C. Smith, J.S. Neilsen, Transit. Metal Chem. 30, 411–418, (2005)

    Article  CAS  Google Scholar 

  5. J.H.B. Nunes, R.E.F. Paiva, A. Cuin, W.R.L. Corbi, Polyhedron 85, 437 (2015)

    Article  CAS  Google Scholar 

  6. M. Cesmea, A. Golcu, I. Demirtas, Spectrochim. Acta A 135, 887 (2015) 3.

    Article  CAS  Google Scholar 

  7. F.A. Khodir, J. Nanomed. Nanotechnol. 6(5), 326 (2015)

    Google Scholar 

  8. R. Karmakar, C.R. Choudhury, D.L. Hughes, S. Mitra, Inorg. Chim. Acta 360, 2631 (2007)

    Article  CAS  Google Scholar 

  9. C.N. Banti, Metallomics 5, 569 (2013)

    Article  CAS  PubMed  Google Scholar 

  10. M. Sutradhar, M.V. Kirillova, M.F.C. Guedes da Silva, C.M. Liu, A.J.L. Pombeiro, Dalton Trans. 42, 16578–16587 (2013)

    Article  CAS  PubMed  Google Scholar 

  11. D. Senthil Raja, N.S.P. Bhuvanesh, K. Natarajan, Eur. J. Med. Chem. 47, 73–85 (2012)

    Article  CAS  PubMed  Google Scholar 

  12. K.M. Vyas, R.N. Jadeja, D. Patel, R.V. Devkar, V.K. Gupta, Polyhedron 65, 262–274 (2013)

    Article  CAS  Google Scholar 

  13. S.Y. Ebrahimipour, M. Mohamadi, J. Castro, N. Mollania, H. Amiri Rudbari, A. Sacca, J. Coord. Chem. 68, 632–649 (2015)

    Article  CAS  Google Scholar 

  14. S. Medici, M. Peana, V.M. Nurchi, J.I. Lachowicz, G. Crisponi, M.A. Zoroddu, Coord. Chem. Rev. 284, 329 (2015)

    Article  CAS  Google Scholar 

  15. C. Santini, M. Pellei, V. Gandin, M. Porchia, F. Tisato, C. Marzano, Chem. Rev. 114, 815 (2014)

    Article  CAS  PubMed  Google Scholar 

  16. F.A. Saad, M.G. Elghalban, N.M. El-Metwaly, H. El-Ghamry, A.M. Khedr, Appl. Organometall. Chem. 31(10), ,3721 (2017)

    Article  CAS  Google Scholar 

  17. F.A. Saad, J. Therm. Anal. Calorim. 129(1), 425–440 (2017)

    Article  CAS  Google Scholar 

  18. A.I. Vogel, Text Book Of quantitative Inorganic Analysis (Longman, London, 1986)

    Google Scholar 

  19. G.A. Bain, J.F. Berry, J. Chem. Educ. 85, 532 (2008)

    Article  CAS  Google Scholar 

  20. E.S. Freeman, B. Carroll, J. Phys. Chem. 62, 394–397 (1958)

    Article  CAS  Google Scholar 

  21. W. Coats, J.P. Redfern, Nature 201, 68 (1964)

    Article  CAS  Google Scholar 

  22. T. Ozawa, Bull. Chem. Sot. Japan. 38, 1881–1886 (1965)

    Article  CAS  Google Scholar 

  23. W.W. Wendlandt, Thermal Methods of Analysis (Wiley, New York, 1974)

    Google Scholar 

  24. J.H.F. Flynn, L.A. Wall, J. Res. Natl. Bur. Stand. A. 70, 487 (1996)

    Google Scholar 

  25. P. Kofstad, Nature. 179, 1362–1363 (1957)

    Article  CAS  Google Scholar 

  26. H.W. Horowitz, G.A. Metzger, Anal. Chem. 35, 1464–1468 (1963)

    Article  CAS  Google Scholar 

  27. X. Wu. A.K. Ray, Surf. Phys. Rev. B. 65, 85403 (2002)

    Article  CAS  Google Scholar 

  28. M.J. Frisch et al., Gaussian 09, Revision D (Gaussian, Inc., Wallingford, CT, 2010)

    Google Scholar 

  29. R. Dennington, T. Keith, J. Millam, Gauss View, Version 4.1.2, SemichemInc, Shawnee Mission, KS, 2007

  30. T.A. Halgren, J. Comput. Chem. 17(5–6), 490–519 (1998)

    Google Scholar 

  31. G.M. Morris, D.S. Goodsell et al., J. Comput. Chem. 19(14), 1639–1662 (1998)

    Article  CAS  Google Scholar 

  32. D.S. Solis, R.J.B. Wets, Research 6(1), 19–30 (1981)

    Google Scholar 

  33. W. Geary, J. Coord. Chem. Rev. 7, 81–122 (1971)

    Article  CAS  Google Scholar 

  34. K. Nakamoto, P.J. Mc Carthy, Spectroscopy and Structure of Metal Chelate Compounds (John Wiley, New York, 1968)

    Google Scholar 

  35. U. El-Ayaan, M.M. Youssef, S. Al-Shihry, J. MolStruct. 936, 213–219 (2009)

    Article  CAS  Google Scholar 

  36. F.A. Saad, H. Jabir, N.M. Al-Fahemi, N. El-Metwaly, M.G. Yarkandy, G.A. El-Ghalban, Al-Hazmy, K.A. Saleh, J. Therm. Anal. Calorim. 128, 1565–1578 (2017)

    Article  CAS  Google Scholar 

  37. A.B.P. Lever, Inorganic Electronic Spectroscopy (Elsevier, Amsterdam, 1986)

    Google Scholar 

  38. N.M. El-Metwaly, M.S. Refat, Spectrochim. Acta Part A 78, 196–204 (2011)

    Article  CAS  Google Scholar 

  39. B.D. Cullity, Elements of X-Ray Diffraction 2nd edn. (Addison-Wesley Inc, Boston, 1993)

    Google Scholar 

  40. A.A. Fahem, Spectrochim. Acta A 88, 10–22 (2012)

    Article  CAS  Google Scholar 

  41. A. Shahrjerdi, S.S.H. Davarani, E. Najafi, M.M. Amini, Ultrason. Sonochem. 22, 382–390 (2015)

    Article  CAS  PubMed  Google Scholar 

  42. S. Velumani, X. Mathew, P.J. Sebastian, S.K. Narayandass, D. Mangalaraj, Solar Energy Mater. Solar Cells 76, 347–358 (2003)

    Article  CAS  Google Scholar 

  43. S. Ritch, T. Chivers, K. Ahmad, M. Afzaal, P.O. Brien, Inorg. Chem. 49, 1198 (2010)

    Article  CAS  PubMed  Google Scholar 

  44. T. Mokari, M. Zhang, P. Yang, J. Am. Chem. Soc. 129, 9864–9865 (2007)

    Article  CAS  Google Scholar 

  45. S.S. Kandil, G.B. El-Hefnawy, E.A. Baker, Thermochim. Acta 414, 105–113 (2004)

    Article  CAS  Google Scholar 

  46. U. El-Ayaan, N.M. El-Metwally, M.M. Youssef, S.A. El Bialy, Spectrochim. Acta Part A 68, 1278–1286 (2007)

    Article  CAS  Google Scholar 

  47. R.K. Ray, G.R. Kauffman, Inorg. Chem. Acta 173, 207–214 (1990)

    Article  CAS  Google Scholar 

  48. R.C. Chikate, S.B. padhye, Polyhedron 24, 1689–1700 (2005)

    Article  CAS  Google Scholar 

  49. S. Sagdinc, B. Köksoy, F. Kandemirli, S.H. Bayari, J. Mol. Struct. 917, 63–70 (2009)

    Article  CAS  Google Scholar 

  50. I. Fleming, Frontier Orbital’s and Organic Chemical Reactions (Wiley, London, 1976)

    Google Scholar 

  51. S.K. Tripathi, R. Muttineni, S.K. Singh, J. Theor. Biol. 334, 87–100 (2013)

    Article  CAS  PubMed  Google Scholar 

  52. M.M. Al-Iede, J. Karpelowsky, D.A. Fitzgerald, Pediatr. Pulmonol. 51(4):394–401 (2015)

    Google Scholar 

  53. N. Terakado, S. Shintani, Y. Nakahara, Oncol. Rep. 7, 1113–1117 (2000)

    CAS  PubMed  Google Scholar 

  54. C. Fosset, B.A. McGaw, M.D. Reid, J. Inorg. Biochem. 99, 1018–1022 (2005)

    Article  CAS  PubMed  Google Scholar 

  55. N.M. El-Metwaly, A.A. El-Asmy, J. Coord. Chem, 59(14), 1591–1601 (2006)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nashwa M. El-Metwaly.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 8685 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Althagafi, I., Elghalban, M.G. & El-Metwaly, N.M. Novel Synthesized Benzesulfonamide Nanosized Complexes; Spectral Characterization, Molecular Docking, Molecular Modeling and Analytical Application. J Inorg Organomet Polym 29, 876–892 (2019). https://doi.org/10.1007/s10904-018-01062-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-018-01062-3

Keywords

Navigation