Skip to main content

Advertisement

Log in

Hierarchical Flower Structured Bi2S3/Reduced Graphene Oxide Nanocomposite for High Electrochemical Performance

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

A biomolecule assisted synthesis of bismuth sulfide (Bi2S3)/reduced graphene oxide (rGO) composite nanostructures by one-pot hydrothermal method. The structure, morphology and elemental analysis of the synthesized material were studied by X-ray diffractometer (XRD) and high resolution transmission electron microscopy (HR-TEM), field emission scanning electron microscopy (FE-SEM), energy dispersive spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS). Fourier transform infrared spectroscopy (FT-IR) and Raman spectroscopy attest the reduction of graphene oxide and structural defects respectively. Absorbance and emission responses were studied by UV-vis-NIR and Photoluminescence spectroscopy. Electrochemical performances of the graphene oxide (GO), Bi2S3 and Bi2S3/rGO composite were investigated by Electrochemical workstation. The Bi2S3/rGO composite electrode attained five times higher specific capacitances of 817.6 F g−1 at scan rate of 5 mV s−1 and 680.6 F g−1 at a current density of 1 A g−1 compared to pure Bi2S3 (143.9 F g−1 at 5 mV s−1 and 152.23 F g−1 at 1 A g−1) respectively. Moreover, Bi2S3/rGO composite maintain better cyclic stability with the capacitance retention about 87% over 1000 cycles, and offer a high conductive connection for fast ion diffusion between electrode and electrolyte interface. The strong synergistic effect of the hierarchical flower structured/rGO composite suggest as a promising material for supercapacitor applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. J. Chmiola, C. Largeot, P.L. Taberna, P. Simon, Y. Gogotsi, Science 328, 480 (2010)

    Article  CAS  Google Scholar 

  2. P.C. Chen, H.T. Chen, J. Qiu, C.W. Zhou, Nano Res. 3, 594–603 (2010)

    Article  CAS  Google Scholar 

  3. J. Yan, Q. Wang, T. Wei, Z. Fan, Adv. Energy Mater. 4, 1300816–1300840 (2014)

    Article  Google Scholar 

  4. E. Frackowiak, Phys. Chem. Chem. Phys. 9, 1774–1785 (2007)

    Article  CAS  Google Scholar 

  5. B.E. Conway, (Kluwer Academic/Plenum, New York, 1999)

  6. L. Hu, J.W. Choi, Y. Yang, S. Jeong, F.L. Mantia, L.F. Cui, Y. Cui, Proc. Natl. Acad. Sci. USA 106, 21490–21494 (2009)

    Article  CAS  Google Scholar 

  7. F. Wu, A. Xie, M. Sun, Y. Wang, M. Wang, J. Mater. Chem. A 3, 14358–14369 (2015)

    Article  CAS  Google Scholar 

  8. L.L. Zhang, X.S. Zhao, Chem. Soc. Rev. 38, 2520–2531 (2009)

    Article  CAS  Google Scholar 

  9. A.K. Geim, K.S. Novoselov, Nat. Mater. 6, 183–191 (2007)

    Article  CAS  Google Scholar 

  10. D.A. Dikin, S. Stankovich, E.J. Zimney, R.D. Piner, G.H. Dommett, G. Evmenenko, S.T. Nguyen, R.S. Ruoff, Nature 448, 457–460 (2007)

    Article  CAS  Google Scholar 

  11. L.S. Panchakarla, K.S. Subrahmanyam, S.K. Saha, A. Govindaraj, H.R. Krishnamurthy, U.V. Waghmare, C.N.R. Rao, Adv. Mater. 21, 4726–4730 (2009)

    CAS  Google Scholar 

  12. A.H. Khan, S. Ghosh, B. Pradhan, A. Dalui, L.K. Shrestha, S. Acharya, K. Ariga, Bull. Chem. Soc. Jpn. 90, 627–648 (2017)

    Article  Google Scholar 

  13. R. Rajendran, L.K. Shrestha, K. Minami, M. Subramanian, R. Jayavel, K. Ariga, J. Mater. Chem. A 2, 18480–18487 (2014)

    Article  CAS  Google Scholar 

  14. R. Rajendran, L.K. Shrestha, R.M. Kumar, R. Jayavel, J.P. Hill, K. Ariga, J. Inorg. Organomet. Polym. Mater. 25, 267–274 (2015)

    Article  CAS  Google Scholar 

  15. P. Sahoo, R.G. Shrestha, L.K. Shrestha, J.P. Hill, T. Takei, K. Ariga, J. Inorg. Organomet. Polym. Mater. 26, 1301–1308 (2016)

    Article  CAS  Google Scholar 

  16. D. Ghosh, C. Kumar, ACS Appl. Mater. Interfaces 7, 1122–1131 (2015)

    Article  CAS  Google Scholar 

  17. K.J. Huang, L. Wang, J.Z. Zhang, L.L. Wang, Y.P. Mo, Energy 67, 234–240 (2014)

    Article  CAS  Google Scholar 

  18. H. Zhang, X. Yu, D. Guo, B. Qu, M. Zang, Q. Li, T. Wang, ACS Appl. Mater. Interfaces 5, 7335–7340 (2013)

    Article  CAS  Google Scholar 

  19. X. Zhang, X. Ge, S. Sun, Y. Qu, W. Chi, C. Chen, W. Lu, Cryst. Eng. Commun. 18, 1090–1095 (2016)

    Article  CAS  Google Scholar 

  20. S. Ratha, C. Sekhar Rout, ACS Appl. Mater. Interfaces 5, 11427–11433 (2013)

    Article  CAS  Google Scholar 

  21. G. Zhang, M. Kong, Y. Yao, L. Long, M. Yan, X. Liao, G. Yin, Z. Huang, A.M. Asiri, X. Sun, Int. J. Hydrog. Energy 40, 10158–10167 (2015)

    Article  Google Scholar 

  22. R. Ramachandran, M. Saranya, P. Kollu, B.P.C. Raghupathy, S.K. Jeong, A. Nirmala Grace, Electrochim. Acta 178, 647–657 (2015)

    Article  CAS  Google Scholar 

  23. M. Bernechea, Y. Cao, G. Konstantatos, J. Mater. Chem. 3, 20642–20648 (2015)

    Article  CAS  Google Scholar 

  24. C. Tang, N. Li, J. Sheng, L. Zhou, L. He, J. Zhu, F. Li, Y. Liu, L. Maia, J. Electrochem. Soc. 164, 6110–6115 (2017)

    Article  Google Scholar 

  25. Y. Luo, H. Chen, X. Li, Z. Gong, X. Wang, X. Peng, M. He, Z. Sheng, Mater. Lett. 105, 12–15 (2013)

    Article  CAS  Google Scholar 

  26. M. Ebadi, S. Abedini, O. Rezai, M.M. Rad, J. Ind. Eng. Chem. 20, 3821–3825 (2014)

    Article  CAS  Google Scholar 

  27. F. Chen, Y. Cao, D. Jia, J. Colloid Interface Sci. 404, 110–116 (2013)

    Article  CAS  Google Scholar 

  28. M. Zhang, D.J. Chen, R.Z. Wang, J.J. Feng, Z. Bai, A.J. Wang, Mater. Sci. Eng. C 33, 3980–3985 (2013)

    Article  CAS  Google Scholar 

  29. C. Ye, G. Meng, Z. Jiang, Y. Wang, G. Wang, L. Zhang, J. Am. Chem. Soc. 124, 15180–15181 (2002)

    Article  CAS  Google Scholar 

  30. H. Zhoung, S. Xiong, L. Wei, B. Xi, Y. Zhu, Y. Qian, Cryst. Growth Des. 9, 3862–3867 (2009)

    Article  Google Scholar 

  31. A. Rauf, Md..S.A.S. Shah, G.H. Choi, U.B. Hamayoum, D.H. Yoon, J.W. Bae, J. Park, W.J. Kim, P.J. Yoo, ACS Sustain. Chem. Eng. 3, 2847–2855 (2015)

    Article  CAS  Google Scholar 

  32. W. Xiang, Y. Yang, J. Yang, H. Yuan, J. Mater. Res. 29, 2272–2287 (2014)

    Article  CAS  Google Scholar 

  33. T. Jia, X. Wang, F. Long, J. Li, Z. Kang, F. Fu, G. Sun, J. Chen, Crystals 6, 140 (2016)

    Article  Google Scholar 

  34. X. He, L. Gao, S. Yang, J. Sun, Cryst. Eng. Commun. 12, 3413–3418 (2010)

    Article  CAS  Google Scholar 

  35. S. Vadivel, A. Nirmalesh Naveen, V.P. Kamalakannana, P. Cao, N. Balasubramanian, Appl. Surf. Sci. 351, 635–645 (2015)

    Article  CAS  Google Scholar 

  36. G. Nie, X. Lu, J. Lei, L. Yang, C. Wang, Electrochim. Acta 154, 24–30 (2015)

    Article  CAS  Google Scholar 

  37. J. Zhong, W. Xiang, L. Liu, X. Yang, W. Cai, J. Zhang, X. Liang, J. Mater. Sci. Technol. 26(5), 417–422 (2010)

    Article  CAS  Google Scholar 

  38. W.S. Hummers Jr., R.E. Offeman, J. Am. Chem. Soc. 80, 1339–1339 (1958)

    Article  CAS  Google Scholar 

  39. B. Zhang, B. Zhang, X. Ye, W. Hou, Y. Zhao, Y. Xie, J. Phys. Chem. B 110, 8978–8985 (2006)

    Article  CAS  Google Scholar 

  40. Z. Zhanga, C. Zhoua, L. Huanga, X. Wanga, Y. Qua, Y. Lai, J. Li, Electrochim. Acta 114, 88–94 (2013)

    Article  Google Scholar 

  41. C. Xu, X. Wang, J. Zhu, J. Phys. Chem. C 112, 19841–19845 (2008)

    Article  CAS  Google Scholar 

  42. S. Vadivel, V.P. Kamalakannan, N. Balasubramanian, Ceram. Int. 40, 14051–14060 (2014)

    Article  CAS  Google Scholar 

  43. D. Thangaraju, R. Karthikeyan, N. Prakash, S. MoorthyBabu, Y. Hayakawa, Dalton Trans. 44, 15031–15041 (2015)

    Article  CAS  Google Scholar 

  44. S.P. Lim, A. Pandikumar, Y.S. Lim, N.M. Huang, H.N. Lim, Sci. Rep. 4, 5305 (2014)

    Article  Google Scholar 

  45. N.A. Zubir, C. Yacou, J. Motuzas, X. Zhang, J.D. Costa, Sci. Rep. 4, 4594 (2014)

    Article  Google Scholar 

  46. L.C. Sim, K.H. Leong, S. Ibrahima, P. Saravanan, J. Mater. Chem. A 2, 5315–5322 (2014)

    Article  CAS  Google Scholar 

  47. Y. Liu, R. Wang, X. Yan, Sci. Rep. 5, 11095 (2015)

    Article  Google Scholar 

  48. C. Sengottaiyan, R. Jayavel, R.G. Shrestha, J.P. Hill, K. Ariga, L.K. Shrestha, J. Inorg. Organomet. Polym. Mater. 27, 576–585 (2016)

    Article  Google Scholar 

  49. L. Yu, H. Ruan, Y. Zheng, D. Li, Nanotechnology 24, 375601–375622 (2013)

    Article  Google Scholar 

  50. Y. Li, Y. Liu, W. Shen, Y. Yang, Y. Wen, M. Wang, Mater. Lett. 65, 2518–2521 (2011)

    Article  CAS  Google Scholar 

  51. K. Satheesh, T. Lavanya, D. Mrinal, R. Jayavel, F. Naoki, Ceram. Int. 39, 9207–9214 (2013)

    Article  Google Scholar 

  52. J. Tang, J. Wang, L.K. Shrestha, M.S.A. Hossain, Z.A. Alothman, Y. Yamauchi, K. Ariga, ACS Appl. Mater. Interfaces. 9, 18986–18993 (2017)

    Article  CAS  Google Scholar 

  53. J.R. Magana, Y.V. Kolen’ko, F.L. Deepak, C. Solans, R.G. Shrestha, J.P. Hill, K. Ariga, L.K. Shrestha, C.R. Abreu, ACS Appl. Mater. Interfaces. 8, 31231–31238 (2016)

    Article  CAS  Google Scholar 

  54. Y. Zhao, W. Ran, J. He, Y. Huang, Z. Liu, W. Liu, Y. Tang, L. Zhang, D. Gao, F. Gao, Small 11, 1310–1319 (2014)

    Article  CAS  Google Scholar 

  55. H. Tong, W. Bai, S. Yue, Z. Gao, L. Lu, L. Shen, S. Dong, J. Zhu, J. Hea, X. Zhang, J. Mater. Chem. A 4, 11256–11263 (2016)

    Article  CAS  Google Scholar 

  56. C. Sengottaiyan, R. Jayavel, P. Bairi, R.G. Shrestha, K. Ariga, L.K. Shrestha, Bull. Chem. Soc. Jpn. 90, 955–962 (2017)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

One of the authors (AK.N.) would like to thank the Centre for Nanoscience and Technology, Anna University, India and National Institute for Materials Science (NIMS), Japan for support in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdul Kalam Noordeen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Noordeen, A.K., Sambasivam, S., Chinnasamy, S. et al. Hierarchical Flower Structured Bi2S3/Reduced Graphene Oxide Nanocomposite for High Electrochemical Performance. J Inorg Organomet Polym 28, 73–83 (2018). https://doi.org/10.1007/s10904-017-0701-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-017-0701-y

Keywords

Navigation