Skip to main content
Log in

Adsorption of naphthalene and indole on F300 MOF in liquid phase by the complementary spectroscopic, kinetic and DFT studies

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

Metal–organic frameworks (MOFs) are the promising functional materials for adsorption in liquid phase. It is important to understand the details of chemical bonding between the aromatic and heteroaromatic adsorbates and major structural units in the MOF sorbent—metal coordinatively unsaturated sites (CUS) and organic linkers. In this paper, we report the mechanistic studies of adsorption of naphthalene and indole on F300 Basolite MOF by two complementary spectroscopic methods and density functional theory (DFT) calculations. Fluorescence spectra, the near-UV/visible diffuse reflectance spectroscopy (near-UV/VIS DRS) and DFT calculations suggest that naphthalene forms an adsorption complex with F300 MOF where naphthalene is quantum confined within the cavity of the F300, weakly electronically bound to the Fe(III) CUS, and strongly dispersively stabilized by side interactions with the benzene rings of the linker of F300. On the other hand, indole forms an adsorption complex with F300 MOF in which indole is electronically bound to the Fe(III) CUS and dispersively stabilized by the side interactions with benzene rings of the linker. Coordination bonds between indole and F300 MOF in the adsorption complex are detected by geometry optimization using the DFT method, and electronic spectra are calculated by the time-dependent-DFT method. The direct spectroscopic proof of the formation of adsorption complex with coordination bonds between indole and F300 MOF is provided by the complementary near-UV/VIS DRS spectroscopy (new absorption bands at 460–660 nm), the wavelength-dependent fluorescence spectroscopy (new fluorescence bands at 410 and 430 nm) and by the time-dependent fluorescence spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. D. Singh, A. Chopra, M.B. Patel, A.S. Sarpal, A comparative evaluation of nitrogen compounds in petroleum distillates. Chromatographia 74(1–2), 121–126 (2011)

    Article  CAS  Google Scholar 

  2. A. Samokhvalov, E.C. Duin, S. Nair, M. Bowman, Z. Davis, B.J. Tatarchuk, Study of the surface chemical reactions of thiophene with Ag/titania by the complementary temperature-programmed electron spin resonance, temperature-programmed desorption, and X-ray photoelectron spectroscopy: adsorption, desorption, and sorbent regeneration mechanisms. J. Phys. Chem. C 114, 4075–4085 (2010)

    Article  CAS  Google Scholar 

  3. A. Jayaraman, G.O. Alptekin, M. Dubovik, M. Schaefer, J. Monroe, K. Bradley, FUEL 212-desulfurization of liquid fuels by adsorption. Abstracts of papers of the American Chemical Society, 2008, p. 235

  4. M. Almarri, X. Ma, C. Song, Role of surface oxygen-containing functional groups in liquid-phase adsorption of nitrogen compounds on carbon-based adsorbents. Energy Fuels 23, 3940–3947 (2009)

    Article  CAS  Google Scholar 

  5. E.S. Huh, A. Zazybin, J. Palgunadi, S. Ahn, J. Hong, H.S. Kim, M. Cheong, B.S. Ahn, Zn-containing ionic liquids for the extractive denitrogenation of a model oil: a mechanistic consideration. Energy Fuels 23(6), 3032–3038 (2009)

    Article  CAS  Google Scholar 

  6. D. Saha, S.G. Deng, Z.G. Yang, Hydrogen adsorption on metal-organic framework (MOF-5) synthesized by DMF approach. J. Porous Mater. 16(2), 141–149 (2009)

    Article  CAS  Google Scholar 

  7. S.-C. Xiang, Z. Zhang, C.-G. Zhao, K. Hong, X. Zhao, D.-R. Ding, M.-H. Xie, C.-D. Wu, M.C. Das, R. Gill, K.M. Thomas, B. Chen, Rationally tuned micropores within enantiopure metal-organic frameworks for highly selective separation of acetylene and ethylene. Nat. Commun. 2, 204 (2011)

    Article  Google Scholar 

  8. S. Keskin, T.M. van Heest, D.S. Sholl, Can metal-organic framework materials play a useful role in large-scale carbon dioxide separations? ChemSusChem 3(8), 879–891 (2010)

    Article  CAS  Google Scholar 

  9. I. Bezverkhyy, G. Ortiz, G. Chaplais, C. Marichal, G. Weber, J.P. Bellat, MIL-53(Al) under reflux in water: formation of gamma-AlO(OH) shell and H2BDC molecules intercalated into the pores. Microporous Mesoporous Mater. 183, 156–161 (2014)

    Article  CAS  Google Scholar 

  10. P. Horcajada, S. Surble, C. Serre, D.Y. Hong, Y.K. Seo, J.S. Chang, J.M. Greneche, I. Margiolaki, G. Ferey, Synthesis and catalytic properties of MIL-100(Fe), an iron(III) carboxylate with large pores. Chem. Commun. 27, 2820–2822 (2007)

    Article  Google Scholar 

  11. A. Dhakshinamoorthy, M. Alvaro, P. Horcajada, E. Gibson, M. Vishnuvarthan, A. Vimont, J.-M. Grenèche, C. Serre, M. Daturi, H. Garcia, Comparison of porous iron trimesates basolite F300 and MIL-100(Fe) as heterogeneous catalysts for lewis acid and oxidation reactions: roles of structural defects and stability. ACS Catal. 2(10), 2060–2065 (2012)

    Article  CAS  Google Scholar 

  12. M. Maes, M. Trekels, M. Boulhout, S. Schouteden, F. Vermoortele, L. Alaerts, D. Heurtaux, Y.-K. Seo, Y.K. Hwang, J.-S. Chang, I. Beurroies, R. Denoyel, K. Temst, A. Vantomme, P. Horcajada, C. Serre, D.E. De Vos, Selective removal of N-heterocyclic aromatic contaminants from fuels by Lewis acidic metal-organic frameworks. Angew. Chem. Int. Ed. 50(18), 4210–4214 (2011)

    Article  CAS  Google Scholar 

  13. A. Samokhvalov, B.J. Tatarchuk, Review of experimental characterization of active sites and determination of molecular mechanisms of adsorption, desorption and regeneration of the deep and ultradeep desulfurization sorbents for liquid fuels. Catal. Rev. 52, 381–410 (2010)

    Article  CAS  Google Scholar 

  14. G. Shan, H. Liu, J. Xing, G. Zhang, K. Wang, Separation of polycyclic aromatic compounds from model gasoline by magnetic alumina sorbent based on pi-complexation. Ind. Eng. Chem. Res. 43(3), 758–761 (2004)

    Article  CAS  Google Scholar 

  15. A. Centrone, E.E. Santiso, T.A. Hatton, Separation of chemical reaction intermediates by metal-organic frameworks. Small 7(16), 2356–2364 (2011)

    Article  CAS  Google Scholar 

  16. T.M. Nicholson, S.K. Bhatia, Electrostatically mediated specific adsorption of small molecules in metallo-organic frameworks. J. Phys. Chem. B 110(49), 24834–24836 (2006)

    Article  CAS  Google Scholar 

  17. M. Tong, D. Liu, Q. Yang, S. Devautour-Vinot, G. Maurin, C. Zhong, Influence of framework metal ions on the dye capture behavior of MIL-100 (Fe, Cr) MOF type solids. J. Mater. Chem. A 1(30), 8534–8537 (2013)

    Article  CAS  Google Scholar 

  18. A. Samokhvalov, S. Nair, E.C. Duin, B.J. Tatarchuk, Surface characterization of Ag/titania adsorbents. Appl. Surf. Sci. 256, 3647–3652 (2010)

    Article  CAS  Google Scholar 

  19. A. Samokhvalov, E.C. Duin, S. Nair, B.J. Tatarchuk, An in situ temperature-programmed XPS study of the surface chemical reactions of thiophene with Ag/titania. Surf. Interface Anal. 42(9), 1476–1482 (2010)

    Article  CAS  Google Scholar 

  20. A. Samokhvalov, E.C. Duin, S. Nair, B.J. Tatarchuk, Adsorption and desorption of dibenzothiophene on Ag–titania studied by the complementary temperature-programmed XPS and ESR. Appl. Surf. Sci. 257(8), 3226–3232 (2010)

    Article  Google Scholar 

  21. P. Dhage, A. Samokhvalov, M.L. McKee, E.C. Duin, B.J. Tatarchuk, Reactive adsorption of hydrogen sulfide by promoted sorbents Cu–ZnO/SiO2: active sites by experiment and simulation. Surf. Interface Anal. 45(5), 865–872 (2013)

    Article  CAS  Google Scholar 

  22. G. Blanco-Brieva, J.M. Campos-Martin, S.M. Al-Zahrani, J.L.G. Fierro, Effectiveness of metal-organic frameworks for removal of refractory organo-sulfur compound present in liquid fuels. Fuel 90(1), 190–197 (2011)

    Article  CAS  Google Scholar 

  23. J.R. Lakowicz, Principles of Fluorescence Spectroscopy (Springer, New York, 2006)

    Book  Google Scholar 

  24. Gaussian 09, Revision D.01, M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery, Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, Ö. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, D.J. Fox (Gaussian Inc., Wallingford, 2009)

  25. W. Koch, M.C. Holthausen, A Chemist’s Guide to Density Functional Theory, 2nd edn. (Wiley-VCH, Weinheim, 2001)

    Book  Google Scholar 

  26. C.J. Cramer, Essentials of Computational Chemistry: Theories and Models (Wiley, Chichester, 2004)

    Google Scholar 

  27. P.J. Hay, W.R. Wadt, Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg. J. Chem. Phys. 82(1), 270–283 (1985)

    Article  CAS  Google Scholar 

  28. W.R. Wadt, P.J. Hay, Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi. J. Chem. Phys. 82(1), 284–298 (1985)

    Article  CAS  Google Scholar 

  29. P.J. Hay, W.R. Wadt, Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals. J. Chem. Phys. 82(1), 299–310 (1985)

    Article  CAS  Google Scholar 

  30. M. Dolg, U. Wedig, H. Stoll, H. Preuss, Energy-adjusted abinitio pseudopotentials for the first row transition elements. J. Chem. Phys. 86(2), 866–872 (1987)

    Article  CAS  Google Scholar 

  31. S. Grimme, J. Antony, S. Ehrlich, H. Krieg, A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132(15) (2010)

  32. A.I. Privalova, J.P. Morozova, E.R. Kashapova, V.J. Artyukhov, Spectral and luminescent properties of 1-substituted naphthalenes. J. Appl. Spectrosc. 78(3), 309–317 (2011)

    Article  CAS  Google Scholar 

  33. O. Schnepp, D.S. McClure, A vibrational analysis of the fluorescence of naphthalene vapor. J. Chem. Phys. 20(9), 1375–1383 (1952)

    Article  CAS  Google Scholar 

  34. R.M. Hochstrasser, The luminescence of organic molecular crystals. Rev. Mod. Phys. 34(3), 531–550 (1962)

    Article  CAS  Google Scholar 

  35. I.B. Berlman, Handbook of Fluorescence Spectra of Aromatic Molecules (Academic Press, NY, 1971), p. 258

    Google Scholar 

  36. Z.Z. Zhang, J.L. Long, X.Q. Xie, H. Lin, Y.E. Zhou, R.S. Yuan, W.X. Dai, Z.X. Ding, X.X. Wang, X.Z. Fu, Probing the electronic structure and photoactivation process of nitrogen-doped TiO2 using DRS, PL, and EPR. ChemPhysChem 13(6), 1542–1550 (2012)

    Article  CAS  Google Scholar 

  37. F.J. Smith, A.T. Armstrong, S.P. McGlynn, Energy of excimer luminescence. V. Excimer fluorescence of naphthalene and methylnaphthalenes. J. Chem. Phys. 44(2), 442–448 (1966)

    Article  CAS  Google Scholar 

  38. J.B. Aladekomo, J.B. Birks, ‘Excimer’ fluorescence. VII. Spectral studies of naphthalene and its derivatives. Proc. R. Soc. Lond. A 284(1399), 551–565 (1965)

    Article  CAS  Google Scholar 

  39. S.R. Patil, S.B. Patwari, Red shift in fluorescence of naphthalene doped by anthracene and perylene. J. Lumin. 82(2), 115–119 (1999)

    Article  CAS  Google Scholar 

  40. Y. Tozuka, E. Tashiro, E. Yonemochi, T. Oguchi, K. Yamamoto, Solid-state fluorescence study of naphthalene adsorption on porous material. J. Colloid Interface Sci. 248(2), 239–243 (2002)

    Article  CAS  Google Scholar 

  41. M. Vacha, Y. Liu, H. Nakatsuka, T. Tani, Photophysical properties of single terrylene molecules in Shpolskii matrices. J. Lumin. 72–4, 548–550 (1997)

    Article  Google Scholar 

  42. M.D. Allendorf, C.A. Bauer, R.K. Bhakta, R.J.T. Houk, Luminescent metal-organic frameworks. Chem. Soc. Rev. 38(5), 1330–1352 (2009)

    Article  CAS  Google Scholar 

  43. S. Grimme, Do special noncovalent π–π stacking interactions really exist? Angew. Chem. Int. Ed. 47(18), 3430–3434 (2008)

    Article  CAS  Google Scholar 

  44. J.A. Greathouse, N.W. Ockwig, L.J. Criscenti, T.R. Guilinger, P. Pohl, M.D. Allendorf, Computational screening of metal-organic frameworks for large-molecule chemical sensing. PCCP 12(39), 12621–12629 (2010)

    Article  CAS  Google Scholar 

  45. E. Borfecchia, S. Maurelli, D. Gianolio, E. Groppo, M. Chiesa, F. Bonino, C. Lamberti, Insights into adsorption of NH3 on HKUST-1 metal–organic framework: a multitechnique approach. J. Phys. Chem. C 116(37), 19839–19850 (2012)

    Article  CAS  Google Scholar 

  46. P. Alborés, E. Rentschler, DFT broken-symmetry exchange couplings calculation in a 1D chain of bridged iron basic carboxylates. Polyhedron 28(9–10), 1912–1916 (2009)

    Article  Google Scholar 

  47. M. Lalia-Kantouri, C.D. Papadopoulos, A.C. Hatzidimitriou, T. Bakas, S. Pachini, A trinuclear iron(III) complex containing the semi-cubane Fe-3(mu(3)-O) (7+) core: structural, spectroscopic, magnetic and electrochemical study. Z. Anorg. Allg. Chem. 636(3–4), 531–538 (2010)

    Article  CAS  Google Scholar 

  48. A. Abedi, V. Amani, N. Safari, Tris(4,40-bi-1,3-thiazole-j2N, N0)iron(II) tetrabromidoferrate(III) bromide. Acta Crystallogr. Sect. E Struct. Rep. Online 67, m311–m312 (2011)

    Article  CAS  Google Scholar 

  49. N. Nijegorodov, P.V.C. Luhanga, J.S. Nkoma, D.P. Winkoun, The influence of planarity, rigidity and internal heavy atom upon fluorescence parameters and the intersystem crossing rate constant in molecules with the biphenyl basis. Spectrochim. Acta A Mol. Biomol. Spectrosc. 64(1), 1–5 (2006)

    Article  CAS  Google Scholar 

  50. M.S. Walker, T.W. Bednar, R. Lumry, Exciplex studies. II. Indole and indole derivatives. J. Chem. Phys. 47(3), 1020–1028 (1967)

    Article  CAS  Google Scholar 

  51. C.D. Borsarelli, S.G. Bertolotti, C.M. Previtali, Exciplex-type behavior and partition of 3-substituted indole derivatives in reverse micelles made with benzylhexadecyldimethylammonium chloride, water and benzene. Photochem. Photobiol. 73(2), 97–104 (2001)

    Article  CAS  Google Scholar 

  52. A. Samokhvalov, Heterogeneous photocatalytic reactions of sulfur aromatic compounds. ChemPhysChem 12(16), 2870–2885 (2011)

    Article  CAS  Google Scholar 

  53. P. Horcajada, C. Serre, M. Vallet-Regí, M. Sebban, F. Taulelle, G. Férey, Metal–organic frameworks as efficient materials for drug delivery. Angew. Chem. Int. Ed. 45(36), 5974–5978 (2006)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

A.S. thanks Rutgers University for his Research Council Grant #202221. M.M. acknowledges the Alabama Supercomputer Center for a generous allocation of computer time.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Samokhvalov.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (TIFF 159 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, J., McKee, M.L. & Samokhvalov, A. Adsorption of naphthalene and indole on F300 MOF in liquid phase by the complementary spectroscopic, kinetic and DFT studies. J Porous Mater 21, 709–727 (2014). https://doi.org/10.1007/s10934-014-9818-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-014-9818-3

Keywords

Navigation