Skip to main content
Log in

Synthesis, Characterization of Nickel Ferrite and Its Uses as Humidity and LPG Sensors

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Nanostructured nickel ferrites (sample B1 and B2) were synthesized by chemical precipitation method using two different precipitating agents; sodium and ammonium hydroxides. The samples were characterized by using powder X-ray diffraction, scanning and transmission electron microscopy techniques. The X-ray diffraction revealed the formation of nickel ferrite with lattice parameter a = 8.3 Å and the average crystallite sizes of the samples B1 and B2 were 50 and 15 nm respectively. Surface morphology of the sample B2 exhibited the higher number of adsorption sites in comparison to B1. Transmissions electron microscopy observations confirmed the formation of nanostructured nickel ferrite. Further the pellets, thick and thin films of materials B1 and B2 were prepared and investigated with the exposition of humidity and LPG. Maximum average sensitivity for humidity was formed as 53.74 MΩ/%RH. Also the maximum value of sensitivity was found 62.3 for 4 vol% of LPG. The results were found to be reproducible up to 96 % after 3 months. Response and recovery times for LPG sensing were found to be 220 and 250 s. Best sensitivity, less hysteresis, small activation energy and good reproducibility identify that fabricated humidity and LPG sensors (B2) are promising and challenging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. S. Sikarwar, B.C. Yadav, Sens. Actuators A 233, 54–70 (2015)

    Article  CAS  Google Scholar 

  2. R. Srivastava, Int. J. Green Nanotechnol. Phys. Chem. 4, 1–8 (2012)

    Article  Google Scholar 

  3. R. Srivastava, S. Singh, U.D. Misra, B.C. Yadav, Int. J. Green Nanotechnol. Phys. Chem. 4, 1–4 (2012)

  4. Y. Tamaura, P.Q. Tu, S. Rojarayanont, H. Abe, Water Sci. Technol. 23, 399–404 (1993)

  5. O. Lupan, V. Cretu, V. Postica, N. Ababii O. Polonskyi, V. Kaidas F. Schutt, Y. K. Mishra, E. Monaico, I. Tiginyanu, V. Sonte, T. Strunskus, F. Faupel, R. Adelung, Sens. Actuators B 224, 434–448 (2016)

  6. T.A.S. Ferreira, J.C. Waerenborgh, M.H.R.M. Mendonsa, M.R. Nunes, F.M. Costa, Solid State Sci. 5, 383–392 (2003)

    Article  CAS  Google Scholar 

  7. G.M. De, J. Appl. Phys. 65, 167–3172 (1989)

  8. S. Singh, B.C. Yadav, M. Singh, R. Kothari, Int. J. Sci. Technol. Soc. 1, 5–21 (2015)

    Google Scholar 

  9. J. Grottrup, I. Paulowicz, A. Schuchardt, Y.K. Misra, Ceram. Int. 42, 8664–8676 (2016)

    Article  Google Scholar 

  10. R. Srivastava, B.C. Yadav, Int. J. Green Nanotechnol. Phys. Chem. 4, 141–154 (2012)

  11. T. Reimer, I. Paulowicz, R. Roder, S. Kaps, O. Lupan, S. Chemintz, W. Benecke, C. Ronning, R. Adelung, Y.K. Mishra, A.C.S. Appl, ACS Appl. Mater. Interfaces 6, 7806–7815 (2014)

    Article  CAS  Google Scholar 

  12. P.P. Singh, C. Bhakat, Int. J. Adv. Sci. Res. Technol. 3, 563–566 (2012)

  13. T. Pannaparayil, R. Maranle, S. Komarneni, S.G. Sankar, J. Appl. Phys. 64, 5641 (1988)

  14. M.H. Sousa, F.A. Tourinhou, J. Phys. Chem. B 105, 1168–1175 (2001)

    Article  CAS  Google Scholar 

  15. R. Srivastava, B.C. Yadav, J. Exp. Nanosci. 10, 703–717 (2014)

    Article  CAS  Google Scholar 

  16. D.E. Speliotis, J. Magn. Magn. Mater. 193, 29–51 (1999)

    Article  CAS  Google Scholar 

  17. P.C. Dorsey, P. Lubitz, D.B. Chrisey, J.S. Horwitz, J. Appl. Phys. 85, 6338–6354 (1999)

    Google Scholar 

  18. A.S. Vaingankar, S.G. Kulkarni, M.S. Sagare, J. Phys. IV France 7, 155–156 (1997)

  19. R. Srivastava, Int. J. Innov. Res. Sci. Eng. Technol. 2, 6567–6571 (2013)

    Google Scholar 

  20. C.Y. Tsay, K.S. Liu, T.F. Lin, I.N. Lin, J. Magn. Magn. Mater. 209, 189–192 (2000)

    Article  CAS  Google Scholar 

  21. T. Krishnaveni, B. Rajinikanth, V. Seetha, R. Raju, S.R. Murthy, J. Alloys Compd. 414, 282–286 (2006)

  22. F. Li, H. Wang, L. Wang, J. Wang, J. Magn. Magn. Mater. 309, 295–299 (2007)

    Article  CAS  Google Scholar 

  23. S. Sun, H. Zeng, D.B. Robinson, S. Raoux, P.M. Rice, S.X. Wang, J. Am. Chem. Soc. 126, 2782 (2004)

    Google Scholar 

  24. T. Hyeon, Y. Chung, J. Park, S.S. Lee, Y.W. Kim, B.H. Park, J. Phys. Chem. B 106, 6831 (2002)

    Article  CAS  Google Scholar 

  25. Q. Chen, Z.J. Zhang, J. Appl. Phys. 73, 3156–3158 (1998)

  26. X. Niu, W. Du, Sens. Actuators B 99, 405–409 (2004)

  27. N. Ikenaga, Y. Ohgaito, H. Matsushima, T. Suzuki, Fuel 83, 661–669 (2004)

  28. J.A. Toledo-Antonio, N. Nava, M. Martinez, X. Bokhimi, Appl. Catal. A 234, 137–144 (2002)

    Article  CAS  Google Scholar 

  29. J. Qiu, C. Wang, M. Gu, Mater. Sci. Eng. B 112, 1–4 (2004)

    Article  Google Scholar 

  30. G. Fan, Z. Gu, L. Yang, F. Li, Chem. Eng. J. 155, 534–541 (2009)

    Article  CAS  Google Scholar 

  31. M. Kobayashi, H. Shirai, M. Nunokawa, Ind. Eng. Chem. Res. 41, 2903–2909 (2002)

    Article  CAS  Google Scholar 

  32. A. Baykal, N. Kasapoglu, Y.K. Koseoglu, M.S. Toprak, H. Bayrakdar, J. Alloys Compd. 464, 514–518 (2008)

  33. A. Alarifi, N.M. Deraz, S. Shaban, J. Alloys Compd. 486, 501–506 (2009)

  34. J.L. Gunjakar, A.M. More, K.V. Gurav, C.D. Lokhande, Appl. Surf. Sci. 254, 5844–5848 (2008)

    Article  CAS  Google Scholar 

  35. O.H. Kwon, Y. Fukushima, M. Sugimoto, N. Hiratsuka, J. Phys. IV France 7, 165–166 (1997)

  36. G. Dixit, J.P. Singh, R.C. Srivastava, H.M. Agrawal, R.C. Chaudhry, Adv. Mater. Lett. 3, 21–28 (2012)

  37. S. Prasad, N.S. Gajbhiye, J. Alloys Compd. 265, 87–92 (1998)

  38. S. Li, J. Appl. Phys. 87, 6223–6225 (2000)

  39. K.V.P.M. Shafi, A. Gedanken, R. Prozorov, J. Balogh, Chem. Mater. 10, 3445–3450 (1998)

  40. C. Kim, J. Appl. Phys. 85, 5223–5225 (1999)

    Article  CAS  Google Scholar 

  41. J.F. Hochepied, P. Bonville, M.P. Pileni, J. Phys. Chem. 104, 905–912 (2000)

  42. Y.I. Kim, D. Kim, C.S. Lee, Phys. B. (Amestherdam, Neth), 337, 42–51 (2003)

  43. N. Feltin, M.P. Pileni, Langmuir 13, 3927–3933 (1997)

  44. Y. Xiaojuan, C. Naisheng, S. Shuifa, L. Ersheng, H. Jinling, Sci. China 41, 442–448 (1998)

  45. R. Srivastava, N. Verma, B.C. Yadav, Adv. Sci. Lett. 20, 917–922 (2014)

  46. B.C. Yadav, R. Srivastava, A. Yadav, V. Srivastava, Sens. Lett. 6, 1–5 (2008)

  47. B.C. Yadav, R. Srivastava, A. Yadav, Sens. Mater. 21, 87–94 (2009)

  48. K. Raj, B. Moskowitz, R.J. Casciari, J. Magn. Magn. Mater. 149, 174 (1995)

  49. S.C. Yeow, W.L. Ong, A.S.W. Wong, G.W. Ho, Sens. Actuators B Chem. 143, 295 (2009)

  50. C.V.G. Reddy, K.K. Seela, S.V. Manorama, Int. J. Inorg. Mater. 2, 301 (2000)

    Article  CAS  Google Scholar 

  51. N.K. Chaudhari, J.S. Yu, J. Phys. Chem. C 112, 19957 (2008)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

B. C. Yadav acknowledges to DAE-BRNS for financial support in the form of project [2013/34/27/BRNS/2693]. Ms. Monika Singh is thankful to BRNS, DAE, Govt. of India for fellowship. Dr. Richa Srivastava is highly grateful to University Grants commission Delhi for ‘Post Doctoral fellowship for Women’, No. F.15-79/2011(SA-II).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richa Srivastava.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Srivastava, R., Yadav, B.C., Singh, M. et al. Synthesis, Characterization of Nickel Ferrite and Its Uses as Humidity and LPG Sensors. J Inorg Organomet Polym 26, 1404–1412 (2016). https://doi.org/10.1007/s10904-016-0425-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-016-0425-4

Keywords

Navigation