Skip to main content
Log in

Preparation of Nanostructured ZnO Thin Films Using Magnetron Sputtering for the Gas Sensors Applications

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

ZnO is one of the most promising transparent conducting oxide materials, which widely used in thin film gas sensors. In this research, the dependence of the thermal oxidation time on structural, morphological and gas sensing properties of ZnO thin films is investigated. ZnO nanostructures are synthesized by using DC magnetron sputtering for deposition of pure zinc layers on glass substrates and then thermal oxidation of deposited zinc layers to produce zinc oxide (ZnO) thin films. Obtained results from X-ray diffraction revealed that the degree of crystallinity and the average grain size of the ZnO deposited thin films enhance with increasing the thermal oxidation time. Surface topography and growth behavior of ZnO thin films have important role in optimization of gas sensing properties of these films. In this study, scanning electron microscopy and atomic force microscopy have been used to investigate the effective parameters related to the surface topography of the films. Obtained results from these analyzes revealed that the surface topography of ZnO deposited samples strongly depend on thermal oxidation time. Also the effect of thermal oxidation time on the performance of ZnO gas sensors is investigated. The results indicated that the ethanol gas sensing properties of ZnO samples improve with decreasing the size of grains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. C. Oros, M. Horprathum, A. Wisitsoraat, T. Srichaiyaperk, B. Samransuksamer, S. Limwichean et al., Ultra-sensitive NO2 sensor based on vertically aligned SnO2 nanorods deposited by DC reactive magnetron sputtering with glancing angle deposition technique. Sens. Actuators B 223, 936–945 (2016)

    Article  CAS  Google Scholar 

  2. R. Yoo, S. Cho, M. Song, W. Lee, Highly sensitive gas sensor based on Al-doped ZnO nanoparticles for detection of dimethyl methylphosphonate as a chemical warfare agent stimulant. Sens. Actuators B 221, 217–223 (2015)

    Article  CAS  Google Scholar 

  3. Yanbai Shen, Wei Wang, Anfeng Fan, Dezhou Wei, Wengang Liu, Cong Han, Highly sensitive hydrogen sensors based on SnO2 nanomaterials with different morphologies. Int. J. Hydrog. Energy 40, 15773–15779 (2015)

    Article  CAS  Google Scholar 

  4. R. Singaravelan, S.B.S. Alwar, Effect of reaction parameters in synthesis, characterisation of electrodeposited zinc nanohexagons. J Nanostruct. Chem. 4, 109–117 (2014)

    Article  Google Scholar 

  5. H.Y. He, J. Fei, J. Lu, Sm-doping effect on optical and electrical properties of ZnO films. J. Nanostruct. Chem. 5, 169–175 (2015)

    Article  Google Scholar 

  6. J. Xu, K. Fan, W. Shi, K. Li, T. Peng, Application of ZnO micro-flowers as scattering layer for ZnO-based dye-sensitized solar cells with enhanced conversion efficiency. Sol. Energy 101, 150–159 (2014)

    Article  CAS  Google Scholar 

  7. K. Lee, N. Cho, E. Yun, H.G. Nam, Characterization of ZnO thin films grown on various substrates by RF magnetron sputtering. Appl. Surf. Sci. 256, 4241–4245 (2010)

    Article  CAS  Google Scholar 

  8. F.Y. Ran, M. Tanemura, Y. Hayashi, T. Hihara, Effect of substrate temperature on the room-temperature ferromagnetism of Cu-doped ZnO films. J. Cryst. Growth 311, 4270–4274 (2009)

    Article  CAS  Google Scholar 

  9. M. Shirazi, M.T. Hosseinnejad, A. Zendehnam, M. Ghoranneviss, G.R. Etaati, Synthesis and characterization of nanostructured ZnO multilayer grown by DC magnetron sputtering. J. Alloy. Compd. 602, 108–116 (2014)

    Article  CAS  Google Scholar 

  10. S.J. Lim, S. Kwon, H. Kim, ZnO thin films prepared by atomic layer deposition and rf sputtering as an active layer for thin film transistor. Thin Solid Films 516, 1523–1528 (2008)

    Article  CAS  Google Scholar 

  11. T. Wang, H. Wu, C. Chen, C. Liu, Growth, optical, and electrical properties of nonpolar m-plane ZnO on p-Si substrates with Al2O3 buffer layers. Appl. Phys. Lett. 100, 011901 (2012)

    Article  Google Scholar 

  12. K. Samanta, P. Bhattacharya, R.S. Katiyar, Raman scattering studies of p-type Sb-doped ZnO thin films. J. Appl. Phys. 108, 113501 (2010)

    Article  Google Scholar 

  13. Z. Qiu, H. Gong, X. Yang, Z. Zhang, J. Han, B. Cao, Phosphorus concentration dependent microstructure and optical property of ZnO nanowires grown by high-pressure pulsed laser deposition. J. Phys. Chem. C 119, 4371–4378 (2015)

    Article  CAS  Google Scholar 

  14. S. Bae, D. Kim, S. Jung, W.S. Jeong, J.E. Lee, S. Cho et al., Bipolar switching behavior of ZnOx thin films deposited by metalorganic chemical vapor deposition at various growth temperatures. J. Electron. Mater. 44, 4175–4181 (2015)

    Article  CAS  Google Scholar 

  15. S. Chen, R.M. Wilson, R. Binions, Synthesis of highly surface-textured ZnO thin films by aerosol assisted chemical vapor deposition. J. Mater. Chem. A 3, 5794–5797 (2015)

    Article  CAS  Google Scholar 

  16. E. Lopez-Mena, S. Jimenez-Sandoval, O. Jimenez-Sandoval, ZnO thin films prepared at low annealing temperatures, from a novel, simple sol–gel precursor solution. J. Sol-Gel. Sci. Technol. 74, 419–424 (2015)

    Article  CAS  Google Scholar 

  17. C.H. Chia, W.C. Tsai, J.W. Chiou, Thickness effect on luminescent properties of sol–gel derived ZnO thin films. J. Lumin. 136, 160–164 (2013)

    Article  CAS  Google Scholar 

  18. M.T. Hosseinnejad, M. Shirazi, M. Ghoranneviss, M.R. Hantehzadeh, E. Darabi, Characterization of nanostructured zinc oxide thin films synthesized at room temperature using low energy plasma focus device. Ceram. Int. 41, 15024–15033 (2015)

    Article  CAS  Google Scholar 

  19. S.H. Mortazavi, S. Pilehvar, M. Ghoranneviss, M.T. Hosseinnejad, S. Zargham, A.A. Mirarefi et al., Plasma oxidation and stabilization of electrospun polyacrylonitrile nanofiber for carbon nanofiber formation. Appl. Phys. A 113, 703–712 (2013)

    Article  Google Scholar 

  20. R.K. Gupta, N. Shridhar, M. Katiyar, Structure of ZnO films prepared by oxidation of metallic Zinc. Mater. Sci. Semicond. Process. 5, 11–15 (2002)

    Article  CAS  Google Scholar 

  21. G.H. Lee, Relationship between crystal structure and photoluminescence properties of ZnO films formed by oxidation of metallic Zn. Electron. Mater. Lett. 6, 155–159 (2010)

    Article  CAS  Google Scholar 

  22. K. Kongjai, S. Choopun, N. Hongsith, A. Gardchareon, Zinc oxide whiskers by thermal oxidation method. Chiang Mai J. Sci. 38, 39–46 (2011)

    CAS  Google Scholar 

  23. B.D. Cullity, S.R. Stock, Elements of X-ray diffraction, vol. 3 (Prentice Hall, New-Jersey, 2001)

    Google Scholar 

  24. M. Bouderbala, S. Hamzaoui, B. Amrani, A.H. Reshak, M. Adnane, T. Sahraoui, M. Zerdali, Thickness dependence of structural, electrical and optical behaviour of undoped ZnO thin films. Phys. B 403, 3326–3330 (2008)

    Article  CAS  Google Scholar 

  25. C.S. Prajapati, P.P. Sahay, Alcohol-sensing characteristics of spray deposited ZnO nano particle thin films. Sens. Actuators B 160, 1043–1049 (2011)

    Article  CAS  Google Scholar 

  26. A. Rothschild, Y. Komem, The effect of grain size on the sensitivity of nanocrystalline metal–oxide gas sensors. J. Appl. Phys. 95, 6374–6380 (2004)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Taghi Hosseinnejad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hosseinnejad, M.T., Shirazi, M., Ghoranneviss, M. et al. Preparation of Nanostructured ZnO Thin Films Using Magnetron Sputtering for the Gas Sensors Applications. J Inorg Organomet Polym 26, 405–412 (2016). https://doi.org/10.1007/s10904-015-0324-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-015-0324-0

Keywords

Navigation