Skip to main content
Log in

Synthesis and Characterization of Polyaniline–Mn3O4 Nanocomposite: Electrical Conductivity and Magnetic Studies

  • Technical Paper
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

Polyaniline (PANI)–Mn3O4 nanocomposites (NCs) have been synthesized by in situ chemical oxidative polymerization of aniline with different molar ratios of aniline:Mn3O4 (3.3:1 and 2.5:1) using ammonium per sulfate as an oxidant in an aqueous solution of sodium dodecyl benzene sulfonic acid, as surfactant and dopant at 5 °C under N2 atmosphere. The structural components and the crystalline phase of the Mn3O4 nanoparticles (NPs) and PANI–Mn3O4 NCs were identified from Fourier transform infrared spectroscopy and X-ray diffraction. The result of FTIR and TGA shows that the interaction between Mn3O4 particles and PANI matrix could improve the thermal stability of NCs. The room temperature electrical conductivity of the synthesized PANI, PANI-Mn3O4 NCs (3.3:1) and (2.5:1) was found to be 3.26 × 10−4, 8.11 × 10−7 and 3.93 × 10−7 S/cm respectively, indicating the decrease of conductivity with an increase of Mn3O4 content in PANI. The magnetic behavior of composite was studied at 5 K. The coercive force (Hc) and remnant magnetization (Mr) increases with increase in addition of Mn3O4 NPs in PANI matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Rao C N R, Annu Rev Phys Chem 40 (1989) 291.

    Article  Google Scholar 

  2. Fritsch S, Sarrias J, Rousset A, Kulkarni G U, Mater Res Bull 33 (1998) 1185.

    Article  Google Scholar 

  3. Weixin Z, Cheng W, Xiaoming Z, Yi X, Yitai Q, Solid State Ionics 117 (1999) 331.

    Article  Google Scholar 

  4. Sia P Z, Lia D, Choi C J, Lia Y B, Genga D Y, Zhang Z D, Solid State Commun 142 (2007) 723.

    Article  Google Scholar 

  5. Vázquez-Olmos A, Redón R, Rodríguez-Gattorno G, Mata-Zamora M E, Morales-Leal Zamora F, Fernández-Osorio A L, Saniger J M, J Colloid Interface Sci 291 (2005) 175.

    Article  Google Scholar 

  6. Wang H, Cui L-F, Yang Y, Casalongue H S, Robinson J T, Liang Y, Cui Y, Dai H, J Am Chem Soc 132 (2010) 13978.

    Article  Google Scholar 

  7. Li X, Zhou L, Gao J, Miao H, Zhang H, Xu J Powder Technol 190 (2009) 324.

    Article  Google Scholar 

  8. Zhang P, Zhan Y, Cai B, Hao C, Wang J, Liu C, Meng Z, Yin Z, Chen Q, Nano Res 3 (2010) 235.

    Article  Google Scholar 

  9. Ahmed K A M, Zeng Q, Wu K, Huang K, J Solid State Chem 183 (2010) 744.

    Article  Google Scholar 

  10. Zhang Y C, Qiao T, Hu X Y, J Solid State Chem 177 (2004) 4093.

    Article  Google Scholar 

  11. Apte S K, Naik S D, Sonawane R S, Kale B B, Pavaskar N, Mandale A B, Das B K, Mater Res Bull 41(2006) 647.

    Article  Google Scholar 

  12. Durmus Z, Baykal A, Kavas H, Direkçi M, Toprak M S, Polyhedron 28 (2009) 2119.

    Article  Google Scholar 

  13. Wu Z, Yu K, Huang Y, Pan C, Xie Y, Chem Central J 1:8 (2007) 1.

    Google Scholar 

  14. Vázquez-Olmos A, Redón R, Fernández-Osorio A L, Saniger J M, Appl Phys A 81 (2005) 1131.

    Article  Google Scholar 

  15. Mu J, Gu Z, Sun H, Wei Q, J Dispersion Sci Technol 27 (2006) 307.

    Article  Google Scholar 

  16. Qiu G, Wang Q, Nie M, J Appl Polym Sci 102 (2006) 2107.

    Article  Google Scholar 

  17. Reddy K R, Lee Kwang-Pill, Iyengar A G, J Appl Polym Sci 104 (2007) 4127.

    Article  Google Scholar 

  18. Umare S S, Huque M M, Gupta M C, Viswanath S G, Macromol Rep A 33 (1996) 381.

    Article  Google Scholar 

  19. Ansari R, Keivani M B, Eur J Chem 3 (2006) 202.

    Google Scholar 

  20. Dallas P, Stamopoulos D, Boukos N, Tzitzios V, Niarchos D, Petridis D, Polymer 48 (2007) 3162.

    Article  Google Scholar 

  21. Shambharkar B H, Umare S S, J Appl Polym Sci 122 (2011) 1905.

    Article  Google Scholar 

  22. Umare S S, Shambharkar B H, Ninghthoujam R S, Synth Met 160 (2010) 1815.

    Article  Google Scholar 

  23. Shambharkar B H, Umare S S, Mat Sci Eng B 175 (2010) 120.

    Article  Google Scholar 

  24. Umare S S, Shambharkar B H, J Appl Polym Sci. doi: 10.1002/app.37799.

  25. Durmus Z, Baykal A, Kavas H, Sözeri H, Phys B 406 (2011) 1114.

    Article  Google Scholar 

  26. Singla M L, Awasthi S, Srivastava A, Sensor Actuat B 127 (2007) 580.

    Article  Google Scholar 

  27. Umare S S, Ninghthoujam R S, Sharma S J, Shrivastava S, Kurian S, Gajbhiye N S, Hyperfine Interact 184 (2008) 235.

    Article  Google Scholar 

  28. Singla M L, Awasthi S, Srivastava A, Sensor Actuat A 136 (2007) 604.

    Article  Google Scholar 

  29. Majid K, Awasthi S, Singla M L, Sensor Actuat A Phys 135 (2007)113.

    Article  Google Scholar 

  30. Vertruyen B, Cloots R, Ausloos M, Fagnard J -F, Vanderbemden Ph, Appl Phys Lett 91 (2007) 062514.

    Article  Google Scholar 

  31. Nascimento O R, Oliveira A J A de, Pereira E C, Correa A A, Walmsley L, J Phys Condens Matter 20 (2008) 035214.

    Article  Google Scholar 

  32. Santana V T, Nascimento O R, Djurado D, Travers J P, Pron A, Walmsley L, J Phys Condens Matter 25 (2013) 116004.

    Article  Google Scholar 

  33. Zaidi N A, Giblin S R, Terry I, Monkman A P, Polymer 45 (2004) 5683.

    Article  Google Scholar 

  34. Kumar S, Singh V, Aggarwal S, Mandal U K, Kotnala R K, Compos Sci Technol 70 (2010) 249.

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank to Department of Condensed Matter Physics and Material Science, TIFR Mumbai for VSM measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. H. Shambharkar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shambharkar, B.H., Umare, S.S. & Rathod, R.C. Synthesis and Characterization of Polyaniline–Mn3O4 Nanocomposite: Electrical Conductivity and Magnetic Studies. Trans Indian Inst Met 67, 827–834 (2014). https://doi.org/10.1007/s12666-014-0405-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-014-0405-8

Keywords

Navigation