Skip to main content
Log in

Growth of the Dysprosium–Barium–Copper Oxide Superconductor Nanoclusters in Biopolymer Gels

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Clusters of DyBa2Cu3O7−y high TC type II nanosuperconductor were prepared by sol–gel method in the presence of biopolymer chitosan. At the first step, the precursor and biopolymer were aggregated into amorphous matrix and then hydrogels were formed by thermogelling. Nucleation and growth of discrete nanoparticles is controlled by the biopolymer gel owing to retention of the fibrous nature of the chitosan at high temperatures up to 500 °C. After heating to 900 °C and complete decomposition of BaCO3, nanoparticles of DyBa2Cu3O7−y superconductor with diameter of 10–20 nm in the form of nanoclusters are prepared. Critical temperature (Tc) of the nanoparticles was found to be above 83 K. Characterizations of specimens were performed using scanning electron microscopy and transmission electron microscopy, supported by other techniques including XRD diffraction, energy dispersive X-ray, FT-IR spectrum and magnetic susceptibility measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme. 1
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. L.C. Pathak, S.K. Mishra, Supercond. Sci. Technol. 18, R67–R89 (2005)

    Article  CAS  Google Scholar 

  2. M. Pekala, J. Mucha, P. Vanderbemden, R. Cloots, M. Ausloos, Appl. Phys. A 81, 1001–1007 (2005)

    Article  CAS  Google Scholar 

  3. E. Ban, Y. Ikebe, Y. Matsuoka, G. Nishijima, K. Watanabe, J. Phys Conf. Ser. 43, 470–473 (2006)

    Article  CAS  Google Scholar 

  4. T. Banerjee, V.C. Bagwe, J. John, S.P. Pai, K. Ganesh Kumara, R. Pinto, Physica C 405, 14–24 (2004)

    Article  CAS  Google Scholar 

  5. I. Hamadneh, A.M. Rosli, R. Abd-Shukor, N.R.M. Suib, S.Y. Yahya. J. Phys. Conf. Ser. 97, 012063, 1–5 (2008)

    Google Scholar 

  6. T. Sato, H. Nakane, S. Yamazaki, N. Mori, S. Hirano, S. Yoshizawa, T. Yamaguchi, Physica C 92–396, 643–647 (2003)

    Article  Google Scholar 

  7. A. Murakami, H. Miyata, R. Hashimoto, K. Katagiri, A. Iwamoto, Physica C 468, 1395–1398 (2008)

    Article  CAS  Google Scholar 

  8. A. Murakami, H. Miyata, R. Hashimoto, K. Otaka, K. Katagiri, A. Iwamoto, Physica C 469, 1207–1210 (2009)

    Article  CAS  Google Scholar 

  9. A. Murakami, K. Otaka, A. Iwamoto, Physica C 470, 1185–1188 (2010)

    Article  CAS  Google Scholar 

  10. H. Kurabayashi, S. Horikoshi, A. Suzuki, M. Ikeda, A. Wongsatanawarid, H. Seki, S. Akiyama, M. Hiragushi, M. Murakami, Physica C 470, 1853–1855 (2010)

    Article  CAS  Google Scholar 

  11. S. Nariki, M. Murakami, Supercond. Sci. Technol. 15, 786–790 (2002)

    Article  CAS  Google Scholar 

  12. T. Nakashima, J. Shimoyama, Y. Tazaki, Y. Ishii, S. Horii, K. Kishio, Physica C 463–465, 325–329 (2007)

    Article  Google Scholar 

  13. X.L. Xu, J.D. Guo, Y.Z. Wang, A. Sozzi, Physica C 371, 129–132 (2002)

    Article  CAS  Google Scholar 

  14. S. Grigoryan, A. Manukyan, A. Hayrapetyan, A. Arzumanyan, A. Kuzanyan, Y. Kafadaryan, E. Vardanyan, Supercond. Sci. Technol. 16, 1202–1206 (2003)

    Article  CAS  Google Scholar 

  15. M. Motta, C.V. Deimling, M.J. Saeki, P.N. Lisboa-Filho, J. Sol–Gel Sci. Technol. 46, 201–207 (2008)

    Article  CAS  Google Scholar 

  16. Z.A.C. Schnepp, S.C. Wimbush, S. Mann, S.R. Hall, Adv. Mater. 20, 1782–1786 (2008)

    Article  CAS  Google Scholar 

  17. E. Lallana, E. Fernandez-Megia, R. Riguera, J. Am. Chem. Soc. 131, 5748–5750 (2009)

    Article  CAS  Google Scholar 

  18. S.R. Hall, Adv. Mater. 18, 487–490 (2006)

    Article  CAS  Google Scholar 

  19. B. Thierry, P. Kujawa, C. Tkaczyk, F.M. Winnik, L. Bilodeau, M. Tabrizian, J. Am. Chem. Soc. 127, 1626–1627 (2005)

    Article  CAS  Google Scholar 

  20. M. Salavati-Niasari, F. Davar, N. Mir, Polyhedron 27, 3514–3518 (2008)

    Article  CAS  Google Scholar 

  21. G. Cardenas, S.P. Miranda, J. Chil. Chem. Soc. 49, 291–295 (2004)

    CAS  Google Scholar 

  22. H.J. Chung, D.H. Go, J.W. Bae, I.K. Jung, J.W. Lee, K.D. Park, Curr. Appl. Phys. 5, 485–488 (2005)

    Article  Google Scholar 

  23. E.A. El-Hefian, E.S. Elgannoudi, A. Mainal, A.H. Yahaya, Turk. J. Chem. 34, 47–56 (2010)

    CAS  Google Scholar 

  24. M. Salavati-Niasari, N. Mir, F. Davar, J. Phys. Chem. Solids 70, 847–852 (2009)

    Article  CAS  Google Scholar 

  25. M. Salavati-Niasari, A. Sobhani, F. Davar, J. Alloys Compd. 507, 77–83 (2010)

    Article  CAS  Google Scholar 

  26. M. Salavati-Niasari, M. Dadkhah, F. Davar, Polyhedron 28, 3005–3009 (2009)

    Article  CAS  Google Scholar 

  27. P. Paturi, J. Raittila, H. Huhtinen, IEEE Trans. Appl. Supercond. 13, 3133–3135 (2003)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the University of Kashan and Islamic Azad University (Science and Research Branch of Tehran).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masoud Salavati-Niasari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alikhanzadeh-Arani, S., Salavati-Niasari, M. & Almasi-Kashi, M. Growth of the Dysprosium–Barium–Copper Oxide Superconductor Nanoclusters in Biopolymer Gels. J Inorg Organomet Polym 22, 1081–1086 (2012). https://doi.org/10.1007/s10904-012-9687-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-012-9687-7

Keywords

Navigation