Skip to main content
Log in

Convergence analysis of multivariate McCormick relaxations

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

The convergence rate is analyzed for McCormick relaxations of compositions of the form \(F \circ f\), where F is a multivariate function, as established by Tsoukalas and Mitsos (J Glob Optim 59:633–662, 2014). Convergence order in the Hausdorff metric and pointwise convergence order are analyzed. Similar to the convergence order propagation of McCormick univariate composition functions, Bompadre and Mitsos (J Glob Optim 52(1):1–28, 2012), the convergence order of the multivariate composition is determined by the minimum of the orders of the inclusion functions of the inner functions and the convergence order of the multivariate outer function. The convergence order in the Hausdorff metric additionally depends on the enclosure order of the image of the inner functions introduced in this work. The result established holds for any composition and can be further specialized for specific compositions. In some cases this specialization results in the bounds established by Bompadre and Mitsos. Examples of important functions, e.g., binary product of functions and minimum of functions show that the convergence rate of the relaxations based on multivariate composition theorem results in a higher convergence rate than the convergence rate of univariate McCormick relaxations. Refined bounds, employing also the range order, similar to those determined by Bompadre et al. (J Glob Optim 57(1):75–114, 2013), on the convergence order of McCormick relaxations of univariate and multivariate composite functions are developed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Adjiman, C.S., Androulakis, I.P., Floudas, C.A.: A global optimization method, \(\alpha \)BB, for general twice-differentiable constrained NLPs-II. Implementation and computational results. Comput. Chem. Eng. 22(9), 1159–1179 (1998)

    Article  Google Scholar 

  2. Adjiman, C.S., Floudas, C.A.: Rigorous convex underestimators for general twice-differentiable problems. J. Glob. Optim. 9(1), 23–40 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  3. Alefeld, G., Mayer, G.: Interval analysis: theory and applications. J. Comput. Appl. Math. 121(1–2), 421–464 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  4. Alt, H., Bra, P., Godau, M., Knauer, C., Wenk, C.: Computing the Hausdorff Distance of Geometric Patterns and Shapes, Algorithms and Combinatorics, vol. 25. Springer, Berlin (2003)

    MATH  Google Scholar 

  5. Alt, H., Scharf, L.: Computing the Hausdorff distance between curved objects. Int. J. Comput. Geom. Appl. 18(04), 307–320 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Atallah, M.J.: A linear time algorithm for the Hausdorff distance between convex polygons. Inf. Process. Lett. 17(4), 207–209 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bompadre, A., Mitsos, A.: Convergence rate of McCormick relaxations. J. Glob. Optim. 52(1), 1–28 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bompadre, A., Mitsos, A., Chachuat, B.: Convergence analysis of Taylor models and McCormick-Taylor models. J. Glob. Optim. 57(1), 75–114 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  9. Du, K., Kearfott, R.B.: The cluster problem in multivariate global optimization. J. Glob. Optim. 5(3), 253–265 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  10. Forster, O.: Analysis 2 Differentialrechnung im \({\mathbb{R}}^n\), gewöhnliche Differentialgleichungen. Springer Spektrum, Heidelberg (2013)

    Google Scholar 

  11. Horst, R., Tuy, H.: Global Optimization: Deterministic Approaches. Springer Science & Business Media, Berlin (1996)

    Book  MATH  Google Scholar 

  12. Kurzhanski, A.B., Varaiya, P.: Ellipsoidal techniques for reachability analysis: internal approximation. Syst. Control Lett. 41(3), 201–211 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kurzhanski, A.B., Varaiya, P.: Reachability analysis for uncertain systems—the ellipsoidal technique. DCDIS Ser. B 9, 347–368 (2002)

    MathSciNet  MATH  Google Scholar 

  14. Maranas, C.D., Floudas, C.A.: A global optimization approach for Lennard–Jones microclusters. J. Chem. Phys. 97(10), 7667–7678 (1992)

    Article  Google Scholar 

  15. Maranas, C.D., Floudas, C.A.: Finding all solutions of nonlinearly constrained systems of equations. J. Glob. Optim. 7(2), 143–182 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  16. McCormick, G.P.: Computability of global solutions to factorable nonconvex programs: part I. Convex underestimating problems. Math. Progr. 10, 147–175 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  17. McCormick, G.P.: Nonlinear Programming: Theory, Algorithms, and Applications. Wiley, New York (1983)

    MATH  Google Scholar 

  18. Mitsos, A., Chachuat, B., Barton, P.I.: McCormick-based relaxations of algorithms. SIAM J. Optim. 20(2), 573–601 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Moore, R.E., Bierbaum, F.: Methods and Applications of Interval Analysis (SIAM Studies in Applied and Numerical Mathematics). Society for Industrial & Applied Mathematics, Philadelphia (1979)

    Book  Google Scholar 

  20. Munkres, J.: Topology. Prentice Hall, Englewood Cliffs (1999)

    MATH  Google Scholar 

  21. Neumaier, A.: Complete search in continuous global optimization and constraint satisfaction. Acta Numer. 13, 271–369 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  22. O’Searcoid, M.: Metric Spaces. Springer Undergraduate Mathematics Series. Springer, London (2006)

    Google Scholar 

  23. Ratschek, H., Rokne, J.: Computer Methods for the Range of Functions. E. Horwood, New York (1984)

    MATH  Google Scholar 

  24. Rucklidge, W.J.: Efficiently locating objects using the Hausdorff distance. Int. J. Comput. Vis. 24(3), 251–270 (1997)

    Article  Google Scholar 

  25. Schöbel, A., Scholz, D.: The theoretical and empirical rate of convergence for geometric branch-and-bound methods. J. Glob. Optim. 48(3), 473–495 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  26. Scott, J.K., Stuber, M.D., Barton, P.I.: Generalized McCormick relaxations. J. Glob. Optim. 51(4), 569–606 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  27. Smith, E.M., Pantelides, C.C.: Global optimisation of nonconvex minlps. Comput. Chem. Eng. 21, 791–796 (1997)

    Article  Google Scholar 

  28. Tawarmalani, M., Sahinidis, N.V.: Semidefinite relaxations of fractional programs via novel convexification techniques. J. Glob. Optim. 20(2), 133–154 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  29. Tawarmalani, M., Sahinidis, N.V.: Convex extensions and envelopes of lower semi-continuous functions. Math. Progr. 93, 247–263 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  30. Tawarmalani, M., Sahinidis, N.V.: Convexification and Global Optimization in Continuous and Mixed-Integer Nonlinear Programming: Theory, Algorithms, Software, and Applications, vol. 65. Springer Science & Business Media, Berlin (2002)

    MATH  Google Scholar 

  31. Tawarmalani, M., Sahinidis, N.V.: A polyhedral branch-and-cut approach to global optimization. Math. Progr. 103(2), 225–249 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  32. Tsoukalas, A., Mitsos, A.: Multivariate McCormick relaxations. J. Glob. Optim. 59, 633–662 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  33. Wechsung, A., Barton, P.I.: Global optimization of bounded factorable functions with discontinuities. J. Glob. Optim. 58(1), 1–30 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  34. Wechsung, A., Schaber, S.D., Barton, P.I.: The cluster problem revisited. J. Glob Optim. 58(3), 429–438 (2014)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

We appreciate the thorough review and helpful comments provided by the anonymous reviewers and editors which resulted in a significantly improved manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Mitsos.

Appendix

Appendix

Proof of the equivalence of Definition 10 and the definition used in [7, 8, 23]:

Definition

(Hausdorff convergence) Let \(Z \subset \mathbb {R}^n\) and \(f:Z \rightarrow \mathbb {R}\) be a continuous function, and let \(H_f\) be an inclusion function of f on Z. The inclusion function \(H_f\) has Hausdorff convergence of order \(\beta >0\) if there exists a constant \(\tau >0\) such that, for any interval \(Y \in \mathbb {I}Z\),

$$\begin{aligned} q(\bar{f}(Y), H_f(Y)) \le \tau w(Y)^{\beta }. \end{aligned}$$

Proof

Let \(Z\subset \mathbb {R}^n\), \(f:Z\rightarrow \mathbb {R}\), \(H_f\) be its inclusion function, \(Y\in \mathbb {I}Z\) and \(\tau ,\beta >0\) be given as in Definition above with

$$\begin{aligned} q(\bar{f}(Y),H_{f}(Y))\le \tau w(Y)^\beta . \end{aligned}$$

Since \(\bar{f}(Y) \subset H_f(Y)\), the equivalence directly follows from

$$\begin{aligned} w(H(Y))-w(\bar{f}(Y))\le 2q(\bar{f}(Y),H_{f}(Y))\le 2\tau w(Y)^\beta = \hat{\tau }w(Y)^\beta . \end{aligned}$$

\(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Najman, J., Mitsos, A. Convergence analysis of multivariate McCormick relaxations. J Glob Optim 66, 597–628 (2016). https://doi.org/10.1007/s10898-016-0408-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-016-0408-6

Keywords

Navigation