Skip to main content
Log in

Constrained trace-optimization of polynomials in freely noncommuting variables

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

The study of matrix inequalities in a dimension-free setting is in the realm of free real algebraic geometry. In this paper we investigate constrained trace and eigenvalue optimization of noncommutative polynomials. We present Lasserre’s relaxation scheme for trace optimization based on semidefinite programming (SDP) and demonstrate its convergence properties. Finite convergence of this relaxation scheme is governed by flatness, i.e., a rank-preserving property for associated dual SDPs. If flatness is observed, then optimizers can be extracted using the Gelfand–Naimark–Segal construction and the Artin–Wedderburn theory verifying exactness of the relaxation. To enforce flatness we employ a noncommutative version of the randomization technique championed by Nie. The implementation of these procedures in our computer algebra system NCSOStoolsis presented and several examples are given to illustrate our results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anjos, M.F., Lasserre, J.B.: Handbook of Semidefinite, Conic and Polynomial Optimization: Theory, Algorithms, Software and Applications, volume 166 of International Series in Operational Research and Management Science. Springer, Berlin (2012)

    Book  Google Scholar 

  2. Barvinok, A.: A Course in Convexity, Volume 54 of Graduate Studies in Mathematics. American Mathematical Society, Providence (2002)

    Google Scholar 

  3. Burgdorf, S., Cafuta, K., Klep, I., Povh, J.: The tracial moment problem and trace-optimization of polynomials. Math. Program. 137(1–2), 557–578 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  4. Brešar, M., Klep, I.: Noncommutative polynomials, Lie skew-ideals and tracial Nullstellensätze. Math. Res. Lett. 16(4), 605–626 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Burgdorf, S., Klep, I.: The truncated tracial moment problem. J. Oper. Theory 68, 141–163 (2012)

    MathSciNet  MATH  Google Scholar 

  6. Brändén, P.: Obstructions to determinantal representability. Adv. Math. 226(2), 1202–1212 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Curto, R.E., Fialkow, L.A.: Solution of the truncated complex moment problem for flat data. Mem. Am. Math. Soc. 119(568), x+52 (1996)

    MathSciNet  MATH  Google Scholar 

  8. Curto, R.E., Fialkow, L.A.: Flat extensions of positive moment matrices: recursively generated relations. Mem. Am. Math. Soc. 136(648), x+56 (1998)

    MathSciNet  MATH  Google Scholar 

  9. Cimprič, J.: A method for computing lowest eigenvalues of symmetric polynomial differential operators by semidefinite programming. J. Math. Anal. Appl. 369(2), 443–452 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cafuta, K., Klep, I., Povh, J.: NCSOStools: a computer algebra system for symbolic and numerical computation with noncommutative polynomials. Optim. Methods Softw., 26(3), 363–380 (2011). Available from http://ncsostools.fis.unm.si/

  11. Cafuta, K., Klep, I., Povh, J.: Constrained polynomial optimization problems with noncommuting variables. SIAM J. Optim. 22(2), 363–383 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Connes, A.: Classification of injective factors. Cases \(II_{1}, II_{\infty }, III_{\lambda }, \lambda \ne 1\). Ann. Math. (2) 104(1), 73–115 (1976)

    Article  MathSciNet  Google Scholar 

  13. de Klerk, E.: Aspects of Semidefinite Programming, Volume 65 of Applied Optimization. Kluwer, Dordrecht (2002)

    Book  Google Scholar 

  14. Helton, J.W., Klep, I., McCullough, S.: The convex Positivstellensatz in a free algebra. Adv. Math. 231(1), 516–534 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Henrion, D., Lasserre, J.B., Löfberg, J.: GloptiPoly 3: moments, optimization and semidefinite programming. Optim. Methods Softw., 24(4–5), 761–779 (2009). Available from http://www.laas.fr/henrion/software/gloptipoly3/

  16. Helton, J.W., McCullough, S.: A Positivstellensatz for non-commutative polynomials. Trans. Am. Math. Soc. 356(9), 3721–3737 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  17. Helton, J.W., McCullough, S.: Every convex free basic semi-algebraic set has an LMI representation. Ann. Math. (2) 176(2), 979–1013 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  18. Helton, J.W., McCullough, S., de Oliveira, M.C., Putinar, M.: Engineering systems and free semi-algebraic geometry. In: Emerging Applications of Algebraic Geometry, Volume 149 of IMA Vol. Math. Appl., pp. 17–62. Springer, (2008)

  19. Klep, I., Schweighofer, M.: Connes’ embedding conjecture and sums of Hermitian squares. Adv. Math. 217(4), 1816–1837 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kaliuzhnyi-Verbovetskyi, D.S., Vinnikov, V.: Foundations of free noncommutative function theory, volume 199. American Mathematical Society, (2014)

  21. Lasserre, J.B.: Global optimization with polynomials and the problem of moments. J. Optim. 11(3), 796–817 (2000/2001)

  22. Lasserre, J.B.: Moments, Positive Polynomials and Their Applications, vol. 1. Imperial College Press, London (2009)

    Book  Google Scholar 

  23. Laurent, M.: Sums of squares, moment matrices and optimization over polynomials. In: Emerging Applications of Algebraic Geometry, pp. 157–270. Springer, (2009)

  24. Löfberg, J.: YALMIP: A toolbox for modeling and optimization in MATLAB. In Proceedings of the CACSD Conference, Taipei, Taiwan, 2004. Available from http://control.ee.ethz.ch/joloef/wiki/pmwiki.php

  25. Mittelmann, D.: An independent benchmarking of SDP and SOCP solvers. Math. Program. B, 95, 407–430 (2003). http://plato.asu.edu/bench.html

  26. Malick, J., Povh, J., Rendl, F., Wiegele, A.: Regularization methods for semidefinite programming. SIAM J. Optim. 20(1), 336–356 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  27. Nie, J.: The \({\cal A}\)-truncated \({\cal K}\)-moment problem. Found. Comput. Math. 14(6), 1243–1276 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  28. Netzer, T., Thom, A.: Hyperbolic polynomials and generalized Clifford algebras. Disc. Comput. Geom. 51, 802–814 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  29. Pironio, S., Navascués, M., Acín, A.: Convergent relaxations of polynomial optimization problems with noncommuting variables. SIAM J. Optim. 20(5), 2157–2180 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  30. Prajna, S., Papachristodoulou, A., Seiler, P., Parrilo, P.A.: SOSTOOLS and its control applications. In: Positive polynomials in control, Volume 312 of Lecture Notes in Control and Inform. Sci., pp. 273–292. Springer, Berlin, (2005)

  31. Procesi, C.: The invariant theory of \(n\times n\) matrices. Adv. Math. 19(3), 306–381 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  32. Procesi, C., Schacher, M.: A non-commutative real nullstellensatz and hilbert’s 17th problem. Ann. Math. 104(3), 395–406 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  33. Powers, V., Scheiderer, C.: The moment problem for non-compact semialgebraic sets. Adv. Geom. 1(1), 71–88 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  34. Putinar, M.: Positive polynomials on compact semi-algebraic sets. Indiana Univ. Math. J. 42(3), 969–984 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  35. Rowen, L.H.: Polynomial Identities in Ring Theory Volume 84 of Pure and Applied Mathematics, vol. 84. Academic Press Inc., New York (1980)

    Google Scholar 

  36. Sturm, J.F.: Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones. Optim. Methods Softw., 11/12(1–4), 625–653 (1999). Available from http://sedumi.ie.lehigh.edu/

  37. Takesaki, M.: Theory of Operator Algebras. III. Springer, Berlin (2003)

    Book  MATH  Google Scholar 

  38. Toh, K.C., Todd, M.J., Tütüncü, R.H.: SDPT3—a MATLAB software package for semidefinite programming, version 1.3. Optim. Methods Softw., 11/12(1–4), 545–581 (1999). Available from http://www.math.nus.edu.sg/mattohkc/sdpt3.html

  39. Vandenberghe, L., Boyd, S.: Semidefinite programming. SIAM Rev. 38(1), 49–95 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  40. Waki, H., Kim, S., Kojima, M., Muramatsu, M., Sugimoto, H.: Algorithm 883: sparsePOP—a sparse semidefinite programming relaxation of polynomial optimization problems. ACM Trans. Math. Software, 35(2), Art. 15, 13 (2009)

  41. Wolkowicz, H., Saigal, R., Vandenberghe, L.: Handbook of Semidefinite Programming. Kluwer, Dordrecht (2000)

    Book  MATH  Google Scholar 

  42. Xu, S., Lam, J.: A survey of linear matrix inequality techniques in stability analysis of delay systems. Int. J. Syst. Sci. 39(12), 1095–1113 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  43. Yamashita, M., Fujisawa, K., Kojima, M.: Implementation and evaluation of SDPA 6.0 (semidefinite programming algorithm 6.0). Optim. Methods Softw., 18(4), 491–505 (2003). Available from http://sdpa.sourceforge.net/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janez Povh.

Additional information

Igor Klep: Supported by the Marsden Fund Council of the Royal Society of New Zealand. Partially supported by the Slovenian Research Agency Grants P1-0222, L1-4292 and L1-6722. Part of this research was done while the author was on leave from the University of Maribor.

Janez Povh: Supported by the Slovenian Research Agency via program P1-0383 and project L7-4119. Supported by the Creative Core FISNM-3330-13-500033 ‘Simulations’ project funded by the European Union.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klep, I., Povh, J. Constrained trace-optimization of polynomials in freely noncommuting variables. J Glob Optim 64, 325–348 (2016). https://doi.org/10.1007/s10898-015-0308-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-015-0308-1

Keywords

Mathematics Subject Classification

Navigation