Skip to main content
Log in

The tracial moment problem and trace-optimization of polynomials

  • Full Length Paper
  • Series A
  • Published:
Mathematical Programming Submit manuscript

Abstract

The main topic addressed in this paper is trace-optimization of polynomials in noncommuting (nc) variables: given an nc polynomial f, what is the smallest trace \({f(\underline {A})}\) can attain for a tuple of matrices \({\underline {A}}\)? A relaxation using semidefinite programming (SDP) based on sums of hermitian squares and commutators is proposed. While this relaxation is not always exact, it gives effectively computable bounds on the optima. To test for exactness, the solution of the dual SDP is investigated. If it satisfies a certain condition called flatness, then the relaxation is exact. In this case it is shown how to extract global trace-optimizers with a procedure based on two ingredients. The first is the solution to the truncated tracial moment problem, and the other crucial component is the numerical implementation of the Artin-Wedderburn theorem for matrix *-algebras due to Murota, Kanno, Kojima, Kojima, and Maehara. Trace-optimization of nc polynomials is a nontrivial extension of polynomial optimization in commuting variables on one side and eigenvalue optimization of nc polynomials on the other side—two topics with many applications, the most prominent being to linear systems engineering and quantum physics. The optimization problems discussed here facilitate new possibilities for applications, e.g. in operator algebras and statistical physics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akhiezer, N.I.: The classical moment problem and some related questions in analysis. Translated by N. Kemmer. Hafner Publishing Co., New York (1965)

  2. Burgdorf, S., Klep, I.: The truncated tracial moment problem. J. Oper. Theory (to appear). http://arxiv.org/abs/1001.3679

  3. Bessis D., Moussa P., Villani M.: Monotonic converging variational approximations to the functional integrals in quantum statistical mechanics. J. Math. Phys. 16(11), 2318–2325 (1975)

    Article  MathSciNet  Google Scholar 

  4. Bayer C., Teichmann J.: The proof of Tchakaloff’s theorem. Proc. Am. Math. Soc. 134(10), 3035–3040 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ben-Tal, A., Nemirovski, A.: Lectures on modern convex optimization. MPS/SIAM Series on Optimization. SIAM, Philadelphia, PA (2001)

  6. Curto, R.E., Fialkow, L.A.: Solution of the truncated complex moment problem for flat data. Mem. Am. Math. Soc. 119(568), x+52 (1996)

  7. Cimprič J.: A method for computing lowest eigenvalues of symmetric polynomial differential operators by semidefinite programming. J. Math. Anal. Appl. 369(2), 443–452 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cafuta, K., Klep, I., Povh, J.: NCSOStools: a computer algebra system for symbolic and numerical computation with noncommutative polynomials. Optim. Methods Softw. 26(3), 363–380 (2011). http://ncsostools.fis.unm.si

  9. Choi, M.D., Lam, T.Y., Reznick, B.: Sums of squares of real polynomials. In: K-Theory and Algebraic Geometry: Connections with Quadratic Forms and Division Algebras. Proceedings of Symposia in Pure Mathematics, vol. 58, pp. 103–126. AMS, Providence, RI (1995)

  10. Connes A.: Classification of injective factors. Cases II1, II, IIIλ, λ ≠ 1. Ann. Math. 104(2), 73–115 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  11. de Oliveira, M.C., Helton, J.W., McCullough, S., Putinar, M.: Engineering systems and free semi-algebraic geometry. In: Emerging Applications of Algebraic Geometry. IMA Volumes in Mathematics and its Applications, vol. 149, pp. 17–62. Springer (2008)

  12. Doherty, A.C., Liang, Y.-C., Toner, B., Wehner, S.: The quantum moment problem and bounds on entangled multi-prover games. In: Twenty-Third Annual IEEE Conference on Computational Complexity, pp. 199–210. IEEE Computer Society, Los Alamitos, CA (2008)

  13. Eberly W., Giesbrecht M.: Efficient decomposition of separable algebras. J. Symb. Comput. 37, 35–81 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  14. Friedl K., Rónyai L.: Polynomial time solutions of some problems in computational algebra. Symp. Theory Comput. Am. Math. Soc. 17, 153–162 (1985)

    Google Scholar 

  15. Glauber R.J.: The quantum theory of optical coherence. Phys. Rev. 130(6), 2529–2539 (1963)

    Article  MathSciNet  Google Scholar 

  16. Helton, J.W., de Oliveira, M., Miller, R.L., Stankus, M.: NCAlgebra: a mathematica package for doing non commuting algebra. http://www.math.ucsd.edu/~ncalg/

  17. Helton J.W.: “Positive” noncommutative polynomials are sums of squares. Ann. Math. (2) 156(2), 675–694 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  18. Henrion, D., Lasserre, J.-B.: Detecting global optimality and extracting solutions in GloptiPoly. In: Positive Polynomials In Control. Lecture Notes in Control and Information Sciences, vol. 312, pp. 293–310. Springer, Berlin (2005)

  19. Henrion, D., Lasserre, J.-B., Löfberg, J.: GloptiPoly 3: moments, optimization and semidefinite programming. Optim. Methods Softw. 24(4–5), 761–779 (2009). http://www.laas.fr/~henrion/software/gloptipoly3/

  20. Klep I., Povh J.: Semidefinite programming and sums of hermitian squares of noncommutative polynomials. J. Pure Appl. Algebra 214, 740–749 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  21. Klep I., Schweighofer M.: Connes’ embedding conjecture and sums of Hermitian squares. Adv. Math. 217(4), 1816–1837 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  22. Klep I., Schweighofer M.: Sums of Hermitian squares and the BMV conjecture. J. Stat. Phys. 133(4), 739–760 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  23. Lam T.Y.: A First Course In Noncommutative Rings. Graduate Texts in Mathematics, vol. 131. Springer, New York (1991)

    Book  Google Scholar 

  24. Lasserre, J.B.: Global optimization with polynomials and the problem of moments. SIAM J. Optim. 11(3), 796–817 (2000/01)

    Google Scholar 

  25. Lasserre J.B.: Moments, Positive Polynomials and Their Applications, vol. 1. Imperial College Press, London (2009)

    Book  Google Scholar 

  26. Laurent, M.: Sums of squares, moment matrices and optimization over polynomials. In: Emerging Applications Of Algebraic Geometry. IMA Volumes in Mathematics and its Applications, vol. 149, pp. 157–270. Springer, New York (2009)

  27. Löfberg, J.: YALMIP: A toolbox for modeling and optimization in MATLAB. In: Proceedings of the CACSD Conference, Taipei, Taiwan (2004). http://users.isy.liu.se/johanl/yalmip/

  28. Mazziotti, D.A.: Realization of quantum chemistry without wave functions through first-order semidefinite programming. Phys. Rev. Lett. 93(21), 213001, 4 (2004)

    Google Scholar 

  29. McCullough S.: Factorization of operator-valued polynomials in several non-commuting variables. Linear Algebra Appl. 326(1–3), 193–203 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  30. Mittelmann, D.: An independent benchmarking of SDP and SOCP solvers. Math. Program. 95(2, Ser. B), 407–430 (2003). http://plato.asu.edu/sub/pns.html

  31. Murota K., Kanno Y., Kojima M., Kojima S.: A numerical algorithm for block-diagonal decomposition of matrix *-algebras with application to semidefinite programming. Jpn. J. Ind. Appl. Math. 27(1), 125–160 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  32. Maehara T., Murota K.: A numerical algorithm for block-diagonal decomposition of matrix *-algebras with general irreducible components. Jpn. J. Ind. Appl. Math. 27(2), 263–293 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  33. Malick J., Povh J., Rendl F., Wiegele A.: Regularization methods for semidefinite programming. SIAM J. Optim. 20(1), 336–356 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  34. Nesterov Y., Nemirovskii A.: Interior-point Polynomial Algorithms In Convex Programming. SIAM Studies in Applied Mathematics, vol. 13. SIAM, Philadelphia (1994)

    Book  Google Scholar 

  35. Parrilo P.A.: Semidefinite programming relaxations for semialgebraic problems. Math. Program. 96(2, Ser. B), 293–320 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  36. Pironio S., Navascues M., Acin A.: Convergent relaxations of polynomial optimization problems with non-commuting variables. SIAM J. Optim. 20(5), 2157–2180 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  37. Prajna, S., Papachristodoulou, A., Seiler, P., Parrilo, P.A.: SOSTOOLS and its control applications. In: Positive Polynomials in Control. Lecture Notes in Control and Information Sciences, vol. 312, pp. 273–292. Springer, Berlin (2005). http://www.cds.caltech.edu/sostools/

  38. Parrilo, P.A., Sturmfels, B.: Minimizing polynomial functions. In: Algorithmic and Quantitative Real Algebraic Geometry (Piscataway, NJ, 2001). DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol. 60, pp. 83–99. American Mathematical Society, Providence, RI (2003)

  39. Pál, K.F., Vértesi, T.: Quantum bounds on Bell inequalities. Phys. Rev. A (3) 79(2), 022120, 12 (2009)

    Google Scholar 

  40. Ramana M.V.: An exact duality theory for semidefinite programming and its complexity implications. Math. Program. Ser. B 77(2), 129–162 (1997)

    MathSciNet  MATH  Google Scholar 

  41. Stochel J.: Solving the truncated moment problem solves the full moment problem. Glasg. Math. J. 43(3), 335–341 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  42. Sturm, J.F.: Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones. Optim. Methods Softw. 11/12(1–4), 625–653 (1999). http://sedumi.ie.lehigh.edu/

  43. Toh, K.-C., Todd, M.J., Tütüncü, R.-H.: SDPT3 a Matlab software package for semidenite programming. Optim. Methods Softw. 11, 545–581 (1999). http://www.math.nus.edu.sg/~mattohkc/sdpt3.html

  44. Waki, H., Kim, S., Kojima, M., Muramatsu, M., Sugimoto, H.: Algorithm 883: sparsePOP—a sparse semidefinite programming relaxation of polynomial optimization problems. ACM Trans. Math. Softw. 35(2), Art. 15, 13 (2009)

    Google Scholar 

  45. Wolkowicz H., Saigal R., Vandenberghe L.: Handbook of Semidefinite Programming. Kluwer, Dordrecht (2000)

    Book  Google Scholar 

  46. Yamashita M., Fujisawa, K., Kojima, M.: Implementation and evaluation of SDPA 6.0 (semidefinite programming algorithm 6.0). Optim. Methods Softw. 18(4), 491–505 (2003). http://sdpa.sourceforge.net/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janez Povh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burgdorf, S., Cafuta, K., Klep, I. et al. The tracial moment problem and trace-optimization of polynomials. Math. Program. 137, 557–578 (2013). https://doi.org/10.1007/s10107-011-0505-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-011-0505-8

Keywords

Mathematics Subject Classification (2000)

Navigation