Skip to main content
Log in

Deterministic global optimization in ab-initio quantum chemistry

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

A large number of problems in ab-initio quantum chemistry involve finding the global minimum of the total system energy. These problems are traditionally solved by numerical approaches equivalent to local optimization. While these approaches are relatively efficient, they do not provide guarantees of global optimality unless a starting point sufficiently close to the global minimum is known apriori. Due to the enormous amount of computational effort required to solve these problems, more mathematically rigorous alternatives have so far received very little attention. Taking the above issue into consideration, this paper explores the use of deterministic global optimization in the context of Hartree-Fock theory, an important mathematical model applied in many quantum chemistry methods. In particular, it presents a general purpose approach for generating linear relaxations for problems arising from Hartree-Fock theory. This was then implemented as an extension to the \({{\tt COUENNE}}\) (Convex Over and Under ENvelopes for Nonlinear Estimation) branch and bound mixed integer non-linear programs solver. Proof of concept calculations that simultaneously optimise the orbital coefficients and the location of the nuclei in closed-shell Hartree-Fock calculations are presented and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adjiman C.S., Dallwig S., Floudas C.A., Neumaier A.: A global optimization method, αBB, for general twice-differentiable constrained NLPs - I. Theor Adv Comput Chem Eng 22, 1137–1158 (1998)

    Article  Google Scholar 

  2. Adjiman C.S., Androulakis I.P., Floudas C.A.: A global optimization method, αBB, for general twice-differentiable constrained NLPs - II. Implement Comput Resul Comput Chem Eng 22, 1159–1179 (1998)

    Article  Google Scholar 

  3. Belotti, P., Lee, J., Liberti, L., Margot, F., Waechter, A.: Branching and bounds tightening techniques for non-convex minlp. Technical report RC24620 (W0808-031), IBM, August 2008

  4. Bonami P., Biegler L.T., Conn A.R., Cornuéjols G., Grossmann I.E., Laird C.D., Lee J., Lodi A., Margot F., Sawaya N., Wächter A.: An algorithmic framework for convex mixed integer nonlinear programs. Discret. Opt. 5(2), 186–204 (2008) In Memory of George B. Dantzig

    Article  Google Scholar 

  5. Bouferguene A., Fares M., Hoggan P.E.: STOP: a slater-type orbital package for molecular electronic structure determination. Int. J. Quantum Chem. 57(4), 801–810 (1996)

    Article  Google Scholar 

  6. Brook A., Kendrick D., Meeraus A.: GAMS, a user’s guide. SIGNUM Newsl. 23, 10–11 (1988)

    Article  Google Scholar 

  7. Cafieri S., Lee J., Liberti L.: On convex relaxations of quadrilinear terms. J. Glob. Optim. 47, 661–685 (2010)

    Article  Google Scholar 

  8. Crainic T., Cun B., Roucairol C.: Parallel branch-and-bound algorithms, chapter 1. Wiley, New Yok (2006)

    Google Scholar 

  9. Daven D.M., Tit N., Morris J.R., Ho K.M.: Structural optimization of Lennard-Jones clusters by a genetic algorithm. Chem. Phys. Lett. 256(1–2), 195–200 (1996)

    Article  Google Scholar 

  10. Doll K., Schön J.C., Jansen M.: Structure prediction based on ab initio simulated annealing for boron nitride. Phys. Rev. B 78, 144110 (2008)

    Article  Google Scholar 

  11. Falk J.E., Soland R.M.: An algorithm for separable nonconvex programming. Manag. Sci. 15, 550–569 (1969)

    Article  Google Scholar 

  12. Floudas C.A., Gounaris C.E.: A review of recent advances in global optimization. J. Glob. Optim. 45, 3–38 (2009)

    Article  Google Scholar 

  13. Floudas C.A.: Deterministic Global Optimization: Theory, Methods and Applications. Springer, Secaucus, NJ (2005)

    Google Scholar 

  14. Foresman J.B., Frisch A.: Exploring Chemistry with Electronic Structure Methods. Gaussian, Inc, New Haven (1996)

    Google Scholar 

  15. Forrest, J., Lougee-Heimer, R.: CBC user guide. IBM (2005). Accessed 7 Feb 2011

  16. Forrest, J., de la Nuez, D., Lougee-Heimer, R.: CLP user guide. IBM (2004). Accessed 7 Feb 2011

  17. Fourer, R., Gay, D.M., Kernighan, B. (1989) Algorithms and model formulations in mathematical programming. Chapter AMPL: A Mathematical Programming Language, pp. 150–151. Springer, New York

  18. Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Montgomery J.A. Jr., Vreven T., Kudin K.N., Burant J.C., Millam J.M., Iyengar S.S., Tomasi J., Barone V., Mennucci B., Cossi M., Scalmani G., Rega N., Petersson G.A., Nakatsuji H., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Klene M., Li X., Knox J.E., Hratchian H.P., Cross J.B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R.E., Yazyev O., Austin A.J., Cammi R., Pomelli C., Ochterski J.W., Ayala P.Y., Morokuma K., Voth G.A., Salvador P., Dannenberg J.J., Zakrzewski V.G., Dapprich S., Daniels A.D., Strain M.C., Farkas O., Malick D.K., Rabuck A.D., Raghavachari K., Foresman J.B., Ortiz J.V., Cui Q., Baboul A.G., Clifford S., Cioslowski J., Stefanov B.B., Liu G., Liashenko A., Piskorz P., Komaromi I., Martin R.L., Fox D.J., Keith T., Al-Laham M.A., Peng C.Y., Nanayakkara A., Challacombe M., Gill P.M.W., Johnson B., Chen W., Wong M.W., Gonzalez C., Pople J.A.: Gaussian 03, Revision C.02. Gaussian, Inc, Wallingford (2004)

    Google Scholar 

  19. GAMS Development Corp (2011) GAMS—the solver manuals. Technical report, Washington, July 2011

  20. Gattupalli R., Lucia A.: Molecular conformation of n-alkanes using terrain/funneling methods. J. Glob. Optim. 43, 429–444 (2009). doi:10.1007/s10898-007-9206-5

    Article  Google Scholar 

  21. Gill P.M.W.: Molecular integrals over gaussian basis functions. Adv. Quantum Chem. 25, 141–205 (1994)

    Article  Google Scholar 

  22. Gill P.M.W., Johnson B.G., Pople J.A.: Two-electron repulsion integrals over gaussian s functions. Int. J. Quantum Chem. 40, 745–752 (1991)

    Article  Google Scholar 

  23. Head-Gordon M., Pople J.A.: A method for two-electron gaussian integral and integral derivative evaluation using recurrence relations. J. Comput. Phys. 26, 218–231 (1978)

    Article  Google Scholar 

  24. Holland J.H.: Genetic algorithms and the optimal allocation of trials. SIAM J. Comput. 2(2), 88–105 (1973)

    Article  Google Scholar 

  25. Horst R., Pardalos P.M.: Handbook of Global Optimization. Kluwer, Dordrecht (1995)

    Google Scholar 

  26. ILOG CPLEX 10.0 User’s Manual, January 2006

  27. Kearfott B.R.: Rigorous Global Search: Continuous Problems. Kluwer, Dordrecht (1996)

    Book  Google Scholar 

  28. Kirkpatrick S., Gelatt C.D., Vecchi M.P.: Optimization by simulated annealing. Science 220(4598), 671–680 (1983)

    Article  Google Scholar 

  29. Klepeis J.L., Floudas C.A.: Comparative study of global minimum energy conformations of hydrated peptides. J. Comput. Chem. 20(6), 636–654 (1999)

    Article  Google Scholar 

  30. Klepeis J.L., Floudas C.A., Morikis D., Lambris J.D.: Predicting peptide structures using nmr data and deterministic global optimization. J. Comput. Chem. 20(13), 1354–1370 (1999)

    Article  Google Scholar 

  31. Klepeis J.L., Androulakis I.P., Ierapetritou M.G., Floudas C.A.: Predicting solvated peptide conformations via global minimization of energetic atom-to-atom interactions. Comput. Chem. Eng 22(6), 765–788 (1998)

    Article  Google Scholar 

  32. Klepeis J.L., Pieja M.J., Floudas C.A.: A new class of hybrid global optimization algorithms for peptide structure prediction: integrated hybrids. Comput. Phys. Commun. 151(2), 121–140 (2003)

    Article  Google Scholar 

  33. Klepeis J., Floudas C.: Multiple minima problem in protein folding: abb global optimization approach. In: Floudas, C.A., Pardalos, P.M. (eds) Encyclopedia of Optimization, pp. 1644–1651. Springer, USA (2001)

    Chapter  Google Scholar 

  34. Land A.H., Doig A.G.: An automatic method of solving discrete programming problems. Econometrica 28(3), 497–520 (1960)

    Article  Google Scholar 

  35. Lavor C.: A deterministic approach for global minimization of molecular potential energy functions. Int. J. Quantum Chem. 95(3), 336–343 (2003)

    Article  Google Scholar 

  36. Lavor C., Liberti L., Maculan N.: Computational experience with the molecular distance geometry problem. In: Pintér, J.D., Pardalos, P. (eds) Global Optimization, Volume 85 of Nonconvex Optimization and Its Applications, pp. 213–225. Springer, USA (2006)

    Google Scholar 

  37. Lavor C.C., Cardozo T.M., ChaerNascimento M.A.: Using an interval branch-and-bound algorithm in the Hartree-Fock method. Int. J. Quantum Chem. 103(5), 500–504 (2005)

    Article  Google Scholar 

  38. Lavor C., Liberti L., Maculan N., Nascimento M.A.C.: Solving Hartree-Fock systems with global optimization methods. Europhys. Lett. 77(5), 50006 (2007)

    Article  Google Scholar 

  39. Liberti, L.: Ev3: a library for symbolic computation in c++ using n-ary trees lix,. Technical report, LIX, Ecole Polytechnique 91128 Palaiseau, France (2003)

  40. Liberti, L.: Reformulation and convex relaxation techniques for global optimization. PhD thesis, Imperial College of Science, Technology and Medicine, University of London, March 2004

  41. Liberti L., Lavor C., Maculan N., Nascimento M.A.C.: Reformulation in mathematical programming: an application to quantum chemistry. Discret. Appl. Math. 157, 1309–1318 (2009)

    Article  Google Scholar 

  42. Liberti L., Pantelides C.C.: Convex envelopes of monomials of odd degree. J. Glob. Optim. 25, 157–168 (2003). doi:10.1023/A:1021924706467

    Article  Google Scholar 

  43. Lin Y., Schrage L.: The global solver in the LINDO API. Optim. Methods Softw. 24, 657–668 (2009)

    Article  Google Scholar 

  44. Lin Y., Stadtherr M.A.: Deterministic global optimization of molecular structures using interval analysis. J. Comput. Chem. 26(13), 1413–1420 (2005)

    Article  Google Scholar 

  45. Little J.D., Murty K.C., Sweeney D.W., Karel C.: An algorithm for the travelling salesman problem. Oper. Res. 11, 972–989 (1963)

    Article  Google Scholar 

  46. Lougee-Heimer R.: The common optimization interface for operations research: Promoting open-source software in the operations research community. IBM J. Res. Dev. 47, 57–66 (2003)

    Article  Google Scholar 

  47. Makino K., Berz M.: Remainder differential algebras and their applications. In: Berz, M., Bischof, C., Corliss, G., Griewank, A. (eds) Computational Differentiation: Techniques, Applications, and Tools, pp. 63–74. SIAM, Philadelphia (1996)

    Google Scholar 

  48. Maranas C.D., Floudas C.A.: A global optimization approach for Lennard-Jones microclusters. J. Chem. Phys. 97(10), 7667–7678 (1992)

    Article  Google Scholar 

  49. Maranas C.D., Floudas C.A.: Finding all solutions of nonlinearly constrained systems of equations. J. Glob. Optim. 7, 143–182 (1995). doi:10.1007/BF01097059

    Article  Google Scholar 

  50. McCormick G.P.: Computability of global solutions to factorable nonconvex programs: part i—convex underestimating problems. Math. Program. 10, 147–175 (1976). doi:10.1007/BF01580665

    Article  Google Scholar 

  51. McCormick, G.P.: Converting general nonlinear programming problems to separable nonlinear programming problems. Technical report T-267, George Washington University, Washington, DC (1972)

  52. McMurchie L.E., Davidson E.R.: One- and two-electron integrals over cartesian guassian functions. J. Chem. Phys. 89(9), 5777–5786 (1988)

    Article  Google Scholar 

  53. Nakatsuji H.: Structure of the exact wave function. J. Chem. Phys. 113(8), 2949–2956 (2000)

    Article  Google Scholar 

  54. Neumaier A., Shcherbina O., Huyer W., Vinkó T.: A comparison of complete global optimization solvers. Math. Program. 103, 335–356 (2005). doi:10.1007/s10107-005-0585-4

    Article  Google Scholar 

  55. Obara S., Saika A.: Efficient recursive computation of molecular integrals over cartesian gaussian functions. J. Chem. Phys. 84(7), 3963 (1986)

    Article  Google Scholar 

  56. Rinnooy K.A., Timmer G.: Stochastic global optimization methods part i: clustering methods. Math. Program. 39, 27–56 (1987). doi:10.1007/BF02592070

    Article  Google Scholar 

  57. Sahinidis N.V.: BARON Branch and Reduce Optimization Navigator User’s Manual Version 4.0. Univeristy of Illinois at Urbana-Champaign, Illinois (2000)

    Google Scholar 

  58. Sahni S.: Computationally related problems. SIAM J. Comput. 3(4), 262–279 (1974)

    Article  Google Scholar 

  59. Schuchardt K.L., Didier B.T., Elsethagen T., Sun L., Gurumoorthi V., Chase J., Li J., Windus T.L.: Basis set exchange:? a community database for computational sciences. J. Chem. Inf. Model. 47(3), 1045–1052 (2007)

    Article  Google Scholar 

  60. Smith, E.: On the optimal design of continuous processes. PhD thesis, Imperial College of Science Technology and Medicine University of London, October 1996

  61. Szabo A., Ostlund N.S.: Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory. Dover Publications, New York (1996)

    Google Scholar 

  62. Waechter A., Biegler L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Math. Program. 106, 25–57 (2006)

    Article  Google Scholar 

  63. Wales D.J., Doye J.P.K.: Global optimization by basin-hopping and the lowest energy structures of Lennard-Jones clusters containing up to 110 atoms. J. Phys. Chem. A 101(28), 5111–5116 (1997)

    Article  Google Scholar 

  64. Wales D.J., Scheraga H.A.: Global optimization of clusters, crystals, and biomolecules. Science 285(5432), 1368–1372 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pete P. Janes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Janes, P.P., Rendell, A.P. Deterministic global optimization in ab-initio quantum chemistry. J Glob Optim 56, 537–558 (2013). https://doi.org/10.1007/s10898-012-9868-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-012-9868-5

Keywords

Navigation