Skip to main content
Log in

Identifying preferred solutions to Multi-Objective Binary Optimisation problems, with an application to the Multi-Objective Knapsack Problem

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

In this paper we present a new framework for identifying preferred solutions to multi-objective binary optimisation problems. We develop the necessary theory which leads to new formulations that integrate the decision space with the space of criterion weights. The advantage of this is that it allows for incorporating preferences directly within a unique binary optimisation problem which identifies efficient solutions and associated weights simultaneously. We discuss how preferences can be incorporated within the formulations and also describe how to accommodate the selection of weights when the identification of a unique solution is required. Our results can be used for designing interactive procedures for the solution of multi-objective binary optimisation problems. We describe one such procedure for the multi-objective multi-dimensional binary knapsack formulation of the portfolio selection problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alves M.J., Clímaco J.: A review of interactive methods for multiobjective integer and mixed-integer programming. Eur. J. Oper. Res. 180, 99–115 (2007)

    Article  Google Scholar 

  2. Balas E.: Discrete programming by the filter method. Oper. Res. 15(5), 915–957 (1967)

    Article  Google Scholar 

  3. Bitran G.R.: Linear multiple objective programmes with zero-one variables. Math. Program. 13, 121–139 (1977)

    Article  Google Scholar 

  4. Bitran G.R.: Theory and algorithms for linear multiobjective programs with zero-one variables. Math. Program. 17, 362–390 (1979)

    Article  Google Scholar 

  5. Bitran G.R., Rivera J.M.: A combined approach to solve binary muticriteria problems. Naval Res. Logist. Q. 29, 181–201 (1982)

    Article  Google Scholar 

  6. Burkard R.E., Keipling H., Krarup J., Pruzan P.M.: A relationship between optimality and efficiency in multiple criteria 0–1 programming problems. Comput. Oper. Res. 8, 241–247 (1981)

    Article  Google Scholar 

  7. Captivo M.E., Clímaco J., Figueira J., Martins E., Santos J.L.: Solving bicriteria 0–1 knapsack problems using a labeling algorithm. Comput. Oper. Res. 30, 1865–1886 (2003)

    Article  Google Scholar 

  8. Colson B., Marcotte P., Sacard G.: Bilevel programming: a survey. 4OR Quar. J. Oper. Res. 3(2), 87–107 (2005)

    Article  Google Scholar 

  9. Deckro R.F., Winkofsky E.P.: Solving zero-one multiple objective programs through implicit enumeration. Eu. J. Oper. Res. 12, 362–374 (1983)

    Article  Google Scholar 

  10. Ehrgott M., Gandibleux X.: A survey and annotated bibliography of multiobjective combinatorial optimization. OR Spektrum 22, 425–460 (2000)

    Google Scholar 

  11. Ehrgott, M., Wiecek, M.M.: Multiobjective programming. In: Figueira J., Greco S., Erghott M. (eds.) Multiple Criteria Decision Analysis. State of the Art Surveys, pp. 667–722. Springer (2005)

  12. Ewing P.L, Tarantino W., Parnell G.S.: Use of decision analysis in the army base realignment and closure (BRAC) 2005 military value analysis. Decis. Anal. 3(1), 33–49 (2006)

    Article  Google Scholar 

  13. Figueira J., M’Silti H., Tolla P.: Using mathematical programming heuristics in a multicriteria network flow context. J. Oper. Res. Soc. 49(8), 878–885 (1998)

    Google Scholar 

  14. Figueira J.R., Greco S., Słowiński R.: Building a set of additive value functions representing a reference preorder and intensities of preference: GRIP method. Eu. J. Oper. Res. 195, 460–486 (2009)

    Article  Google Scholar 

  15. Figueira J.R., Greco S., Mousseau V., Słowiński R.: Interactive multi-objective optimization using a set of additive value functions. In: Branke, J., Deb, K., Miettinen, K., Słowiński, R. (eds) Multiobjective Optimization: Interactive and Evolutionary Approaches, chap. 4., pp. 97–119. Springer, Berlin (2008)

    Google Scholar 

  16. French S.: Decision Theory—An Introduction to the Mathematics of Rationality. Ellis Horwood, London (1996)

    Google Scholar 

  17. Gabani D., Magazine M.: An interactive heuristic approach for multi-objective integer-programming problems. J. Oper. Res. Soc. 37(3), 285–291 (1986)

    Google Scholar 

  18. Golabi K., Kirkwood C.W., Sicherman A.: Selecting a portfolio of solar energy projects using multiattribute preference theory. Manag. Sci. 27(2), 174–189 (1981)

    Article  Google Scholar 

  19. Gomes da Silva G., Figueira J.R., Lisboa J., Barman S.: An interactive decision support system for an aggregate production planning model base on multiple criteria mixed integer linear programming. Omega 34, 167–177 (2006)

    Article  Google Scholar 

  20. Gonzalez J.J., Reeves G.R., Franz L.S.: An interactive procedure for solving multiple objective integer linear programming problems. In: Haimes, Y.Y., Chankong, V. (eds) Decision Making with Multiple Objectives, Lexture Notes in Economics and Mathematical Systems, pp. 250–260. Springer, Berlin (1985)

    Google Scholar 

  21. ILOG Inc. ILOG CPLEX 11.2. www.ilog.com/products/cplex, 2007.

  22. Johnson, E.L., Padberg, M.W.: A note on the knapsack problem with special oedered sets. Research report, INRIA, Domaine de Voluceau, Rocquencourt, BP105 78150 Le Chesnay, France, (1980)

  23. Keeney R.L., Raiffa H.: Decisions with Multiple Objectives: Preferences and Value Tradeoffs. Wiley, New York (1976)

    Google Scholar 

  24. Kirkwood C.W.: Strategic Decision Making: Multiobjective Decision Analysis with Spreadsheets. Belmont, Duxbury (1997)

    Google Scholar 

  25. Kiziltan G., Yucaoglu E.: An algorithm for multiobjective zero-one linear programming. Manag. Sci. 29(12), 1444–1453 (1983)

    Article  Google Scholar 

  26. Kleinmuntz D.N.: Resource allocation decisions. In: Edwards, W., Miles, R.F., Von Winterfeldt, D. (eds) Advances in Decision Analysis, Cambridge University Press, Cambridge (2007)

    Google Scholar 

  27. Klingman D., Napier A., Stutz J.: NETGEN: a program for generating large scale capacitated assignment, transportation and minimum cost floe network problems. Manag. Sci. 20(5), 814–821 (1974)

    Article  Google Scholar 

  28. Loch C.H., Kavadias S.: Dynamic portfolio selection of NPD programs using marginal returns. Manag. Sci. 48(10), 1227–1241 (2002)

    Article  Google Scholar 

  29. Marcotte, O., Soland, R.M.: Branch and bound algorithm for multiple criteria optimization. Technical report, University of Cornell and George Washington, (1980)

  30. Marcotte O., Soland R.M.: An interactive branch-and-bound algorithm for multiple criteria optimization. Manag. Sci. 32(1), 61–75 (1986)

    Article  Google Scholar 

  31. Mousseau V., Figueira J., Dias L., Da Silva C.G., Clímaco J.: Resolving inconsistencies among constraints on the parameters of an MCDA model. Eu. J. Oper. Res. 147, 72–93 (2003)

    Article  Google Scholar 

  32. Pasternak, H., Passy, U.: Bicriterion mathematical programmes with boolean variables. In: Cochrane J.L., Zeleny, M. (eds.) Multiple Criteria Decision Making, pp. 327–348. University of South Carlina Press (1973)

  33. Phillips L.D., Banae Costa C.: Transparent prioritisation, budgeting and resource allocation with multi-criteria decision analysis and decision conferencing. Ann. Oper. Res. 154(1), 51–68 (2007)

    Article  Google Scholar 

  34. Stern N.: The Economics of Climate Change: The Stern Review. Cambridge University Press, Cambridge (2007)

    Google Scholar 

  35. Steuer R.E.: Multiple Criteria Optimization: Theory, Computation and Application. Wiley, New York (1986)

    Google Scholar 

  36. Steuer R.E., Choo E.-U.: An interactive weighted Tchebycheff procedure for multiple objective programming. Math. Program. 26, 326–344 (1983)

    Article  Google Scholar 

  37. von Winterfeldt D., Edwards W.: Decision Analysis and Behavioural Research. Cambridge University Press, Cambridge (1986)

    Google Scholar 

  38. Wakker P.P.: Additive Representations of Preferences: A New Foundation of Decision Analysis. Kluwer Academic Publishers, Dodrecht (1989)

    Google Scholar 

  39. White D.J.: A multiple objective interactive Lagrangean relaxation approach. Eu. J. Oper. Res. 19, 82–90 (1985)

    Article  Google Scholar 

  40. White D.J.: Weighting factor extensions for finite multiple objective vector minimization. Eu. J. Oper. Res. 36, 256–265 (1988)

    Article  Google Scholar 

  41. Wierzbicki A.P.: A mathematical basis for satisficing decision making. Math. Model. 3, 391–405 (1982)

    Article  Google Scholar 

  42. Wierzbicki A.P.: On the completeness and constructiveness of parametric characterizations to vector optimization problems. OR Spectrum 8, 73–87 (1986)

    Google Scholar 

  43. Yunes T.H., Napolitano D., Scheller-Wolf A., Tayur S.: Building efficient product portfolios at John Deere and company. Manag. Sci. 55(4), 615–629 (2007)

    Google Scholar 

  44. Zemel E.: The linear multiple choice knapsack problem. Oper. Res. 28(6), 1412–1423 (1980)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolaos Argyris.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Argyris, N., Figueira, J.R. & Morton, A. Identifying preferred solutions to Multi-Objective Binary Optimisation problems, with an application to the Multi-Objective Knapsack Problem. J Glob Optim 49, 213–235 (2011). https://doi.org/10.1007/s10898-010-9541-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-010-9541-9

Keywords

Navigation