Skip to main content

Multi-Objective Optimization: Methods and Applications

  • Chapter
  • First Online:
The Palgrave Handbook of Operations Research

Abstract

Multi-objective optimization is concerned with finding solutions to a decision problem with multiple, normally conflicting objectives. This chapter focusses on multi-objective optimization problems that can be characterized within the paradigm of mathematical programming. Three modelling techniques that are well established in the literature are presented: Pareto set generation, goal programming and compromise programming. Each method is described, along with its strengths, weaknesses and areas of application. The underlying assumptions and philosophies of each method, nature of interaction of decision makers and nature of solutions produced is discussed and compared between the three methods. A small but representative example is given for each method and the results are discussed and conclusions are drawn.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Akbari, N., Jones, D., Arabikhan, F.: Goal programming models with interval coefficients for the sustainable selection of marine renewable energy projects in the UK. European Journal of Operational Researsh. 293, 748–760 (2020)

    Article  Google Scholar 

  2. Arani, M., Chan, Y., Liu, X., Momenitabar, M.: A lateral resupply blood supply chain network design under uncertainties. Applied Mathematical Modelling. 93, 165–187 (2021)

    Article  Google Scholar 

  3. Bader J., Zitzler, E.: HypE: an algorithm for fast hypervolume-based many-objective optimization. Evol Comput. 19, 45–76 (2011)

    Article  Google Scholar 

  4. Belton, V., Stewart, T.: Multiple criteria decision analysis: an integrated approach. Springer Science & Business Media (2002)

    Google Scholar 

  5. Beume N., Naujoks, B., Emmerich, M.: SMS-EMOA: multiobjective selection based on dominated hypervolume. Eur J Oper Res. 181, 1653–1669 (2007)

    Article  Google Scholar 

  6. Blasco, F., Cuchillo-Ibanez, E., Moron, M. Romero, C.: On the monotonicity of the compromise set in multicriteria problems. Journal of Optimization Theory and Applications. 102, 69–82 (1999)

    Article  Google Scholar 

  7. Burke, E.K., Gendreau, M., Hyde, M., Kendall, G., Ochoa, G., özcan, E., Qu, R.: Hyper-heuristics: a survey of the state of the art. J Oper Res Soc. 64, 1695–1724 (2013)

    Google Scholar 

  8. Chambers, D., Charnes, A.: Inter-temporal analysis and optimization of bank portfolios. Management Science. 7, 393–410 (1961)

    Article  Google Scholar 

  9. Chang, C.T.: Revised multi-choice goal programming. Applied Mathematical Modelling. 32, 2587–2595 (2008)

    Article  Google Scholar 

  10. Charnes, A., Cooper, W.: Management models and industrial applications of linear programming. John Wiley and Sons, New York (1961)

    Google Scholar 

  11. Charnes, A., Cooper, W., Ferguson, R.O.: Optimal estimation of executive compensation by linear programming. Management Science. 1, 138–151 (1955)

    Article  Google Scholar 

  12. Coello, C.A.C., Brambila, S.G., Gamboa, J.F., Tapia, M.G.C., Gomez, R.H.G.: Evolutionarymultiobjective optimization: open research areas and some challenges lying ahead. Complex & Intelligent Systems. 6, 221–236 (2020)

    Article  Google Scholar 

  13. Cohon, J.L., Marks, D.H.: A review and evaluation of multiobjective programing techniques. Water Resources Research. 11, 208–220 (1975)

    Article  Google Scholar 

  14. Deb, K.: Multi-Objective Optimization Using Evolutionary Algorithms. John Wiley & Sons Inc, New York, NY, USA (2001)

    Google Scholar 

  15. Deb, K, Jain, H.: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, Part I: solving problems with Box constraints. IEEE Trans Evol Comput. 18, 577–601 (2014)

    Article  Google Scholar 

  16. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Comput. 6, 182–197 (2002)

    Article  Google Scholar 

  17. Demir, E., Bekta, T., Laporte, G.: The bi-objective pollution-routing problem. European Journal of Operational Research. 232, 464–478 (2014)

    Article  Google Scholar 

  18. Ehrgott, M.: Multicriteria optimization. Springer Science & Business Media (2005)

    Google Scholar 

  19. Ehrgott, M., Gandibleux, X.: Multiple criteria optimization. Lecture Notes in Economics and Mathematical Systems. 491 (2002)

    Google Scholar 

  20. Emmerich, M., Beume, N., Naujoks, B.: An EMO algorithm using the hypervolume measure as selection criterion. In: Coello CAC, Aguirre AH, Zitzler E Evolutionary multi-criterion optimization. Lecture notes in computer science, vol 3410. Third international conference, EMO2005. Springer, Guanajuato, México. 62–76 (2005)

    Google Scholar 

  21. Farughi, H., Tavana, M., Mostafayi, S., Arteaga, F.J.: A novel optimization model for designing compact, balanced, and contiguous healthcare districts. Journal of the Operational Research Society, 71, 1740–1759 (2020)

    Article  Google Scholar 

  22. Ferrer, J.M., Javier Martin-Campo, F., Teresa Ortuno, M., Pedraza-Martinez, A.J., Tirado, G., Vitoriano, B.: Multi-criteria optimization for last mile distribution of disaster relief aid: Test cases and applications. European Journal of Operational Research. 269, 501–515 (2018)

    Article  Google Scholar 

  23. Flavell, R.B. and others.: A new goal programming formulation. Omega. 4, 731–732 (1976)

    Google Scholar 

  24. Fonseca, C.M., Fleming, P.J.: Genetic algorithms for multiobjective optimization: formulation, discussion and generalization. In: Forrest S Proceedings of the fifth international conference on genetic algorithms. Morgan Kauffman Publishers, San Mateo, California, USA. 416–423 (1993)

    Google Scholar 

  25. Gass, S.I.: A process for determining priorities and weights for large-scale linear goal programmes. Journal of the Operational Research Society. 37, 779–785 (1986)

    Article  Google Scholar 

  26. Goldberg, D.E.: Genetic algorithms in search, optimization and machine learning. Addison-Wesley Publishing Company, Reading (1989)

    Google Scholar 

  27. Gómez, R.H., Coello, C.A.C.: A hyper-heuristic of scalarizing functions. In: 2017 genetic and evolutionary computation conference (GECCO’2017), ACM Press, Berlin, Germany. 577–584 (2017)

    Google Scholar 

  28. Gonçalves, R.A., Kuk, J.N., Almeida, C.P., Venske, S.M. MOEA/D-HH: a hyper-heuristic for multi-objective problems. In: Evolutionary multi-criterion optimization, 8th international conference, EMO 2015. Lecture notes in computer science, vol 9018, Springer, Guimarães, Portugal. 94–108 (2015)

    Google Scholar 

  29. Haimes, Y.: On a bicriterion formulation of the problems of integrated system identification and system optimization. IEEE Transactions on Systems, Man, and Cybernetics. 1, 296–297 (1971)

    Google Scholar 

  30. Holland, J.: Adaptation in natural and artificial systems. The University of Mihcigan Press (1975)

    Google Scholar 

  31. Homayouni, Z. Pishvaee, M. S., Jahani, H., Ivanov, D.: A robust-heuristic optimization approach to a green supply chain design with consideration of assorted vehicle types and carbon policies under uncertainty. Annals of Operations Research (2021). https://doi.org/10.1007/s10479-021-03985-6

    Article  Google Scholar 

  32. Ignizio, J.P.: Goal programming and extensions. Lexington Books (1976)

    Google Scholar 

  33. Jones, D.: A practical weight sensitivity algorithm for goal and multiple objective programming. European Journal of Operational Research. 213, 238–245 (2011)

    Article  Google Scholar 

  34. Jones, D., Florentino, H., Cantane, D., Oliveira, R.: An extended goal programming methodology for analysis of a network encompassing multiple objectives and stakeholders. European Journal of Operational Research. 255, 845–855 (2016)

    Article  Google Scholar 

  35. Jones, D., Tamiz, M.: Practical goal programming. Springer (2010)

    Google Scholar 

  36. Lee, S.M.: Goal programming for decision analysis. Philadelphia: Auerbach Publishers. 252–260 (1972)

    Google Scholar 

  37. Li, M., Yao, X.: Quality evaluation of solution sets in multiobjective optimisation: a survey. ACM Comput Surv. 52, 1–38 (2019)

    Google Scholar 

  38. Lin, J.C.W., Srivastava, G., Zhang, Y., Djenouri, Y., Aloqaily, M.: Privacy-Preserving Multiobjective Sanitization Model in 6G IoT Environments. IEEE Internet of Things Journal. 8, 5340–5349 (2021)

    Article  Google Scholar 

  39. Maashi, M.: An investigation of multi-objective hyperheuristics for multi-objective optimisation. PhD thesis, The University of Nottingham, UK (2014)

    Google Scholar 

  40. Mavrotas, G.: Effective implementation of the \(\varepsilon \)-constraint method in multi-objective mathematical programming problems. Applied Mathematics and Computation. 213, 455–465 (2009)

    Google Scholar 

  41. McClymont, K., Keedwell, E.C.: Markov chain hyperheuristic (MCHH): an online selective hyper-heuristic for multiobjective continuous problems. In: 2011 genetic and evolutionary computation conference (GECCO’2011), ACM Press, Dublin, Ireland. 2003–2010 (2011)

    Google Scholar 

  42. Miao, P., Yue, Z., Niu,T., Alizadeh, A. Jermsittiparsert, K.: Optimal emission management of photovoltaic and wind generation based energy hub system using compromise programming. Journal of Cleaner Production. 281 (2021). https://doi.org/10.1016/j.jclepro.2020.124333.

  43. Miettinen K.: Non-linear Multi-objective Optimization. Springer (1998)

    Google Scholar 

  44. Onat, N.C., Aboushaqrah, N.N.M., Kucukvar, M., Tarlochan, F., Hamouda, A.M.: From sustainability assessment to sustainability management for policy development: The case for electric vehicles. 216 (2020). https://doi.org/10.1016/j.enconman.2020.112937

  45. Pla-Santamaria, D., Bravo, M., Reig-Mullor, J., Molina, F.S.: A multicriteria approach to manage credit risk under strict uncertainty. TOP (2020). https://doi.org/10.1007/s11750-020-00571-0

    Article  Google Scholar 

  46. Romero, C.: A general structure of achievement function for a goal programming model. European Journal of Operational Research. 153, 675–686 (2004)

    Article  Google Scholar 

  47. Romero, C.: Extended lexicographic goal programming: a unifying approach. Omega. 29, 63–71 (2001)

    Article  Google Scholar 

  48. Romero, C.: Handbook of critical issues in goal programming. Elsevier. (1991)

    Google Scholar 

  49. Romero, C., Tamiz, M., Jones, D.F.: Goal programming, compromise programming and reference point method formulations: linkages and utility interpretations. Journal of the Operational Research Society. 49, 986–991 (1998)

    Article  Google Scholar 

  50. Rudolph G., Agapie A.: Convergence properties of some multi-objective evolutionary algorithms. In: Proceedings of the 2000 conference on evolutionary computation, vol 2, IEEE Press, Piscataway, New Jersey. 1010–1016 (2000)

    Google Scholar 

  51. Simon, H.: A behavioral model of rational choice. The Quarterly Journal of Economics. 69, 99–118 (1955)

    Article  Google Scholar 

  52. Schaffer, J.D.: Multiple objective optimization with vector evaluated genetic algorithms. In: Genetic algorithms and their applications. Proceedings of the first international conference on genetic algorithms, Lawrence Erlbaum, 93–100 (1985)

    Google Scholar 

  53. Srinivas, N., Deb, K.: Multiobjective optimization using nondominated sorting in genetic algorithms. Evol Comput. 2, 221–248 (1994)

    Article  Google Scholar 

  54. Steuer, R.E.: Multiple criteria optimization: Theory, computation and application. John Wliey & Sons, New York, NY, USA (1986)

    Google Scholar 

  55. Uria, M.V.R., Caballero, R., Ruiz, F., Romero, C.: Meta-goal programming. European Journal of Operational Research. 136, 422–429 (2002)

    Article  Google Scholar 

  56. Walker, D.J., Keedwell, E.: Multi-objective optimisation with a sequence-based selection hyper-heuristic. In: Proceedings of the 2016 on genetic and evolutionary computation conference companion, ACM Press, New York, USA. 81–82 (2016)

    Google Scholar 

  57. Wang, F., Xu, J., Liu, L., Yin, G., Wang, J., Yan, J.: Optimal design and operation of hybrid renewable energy system for drinking water treatment. Energy. 219, (2021), https://doi.org/10.1016/j.energy.2020.119673

  58. Wang, Y., Zhang, J., Guan, X., Xu, M., Wang, Z., Wang, H.: Collaborative multiple centers fresh logistics distribution network optimization with resource sharing and temperature control constraints. Expert Systems With Pplications. 165 (2021). https://doi.org/10.1016/j.eswa.2020.113838

  59. Yu, H., Sun, X., Solvang, W.D., Laporte, G., Lee, C.K.M.: A stochastic network design problem for hazardous waste management. Journal of Cleaner Production (2020). https://doi.org/10.1016/j.jclepro.2020.123566

    Article  Google Scholar 

  60. Yu, P.L.: A class of solutions for group decision problems. Management Science. 19, 936–946 (1973)

    Article  Google Scholar 

  61. Zajac, S., Huber, S.: Objectives and methods in multi-objective routing problems: a survey and classification scheme. European Journal of Operational Research. 290, 1–25 (2021). https://doi.org/10.1016/j.ejor.2020.07.005

    Article  Google Scholar 

  62. Zeleny, M.: Multiple Criteria Decision Making. McGraw-Hill, Company, London (1982)

    Google Scholar 

  63. Zitzler, E., Deb, K., Thiele, L.: Comparison of multiobjective evolutionary algorithms: Empirical results. Evolutionary Computation 8, 173–195 (2000)

    Article  Google Scholar 

  64. Zitzler, E., Künzli, S.: Indicator-based selection in multiobjective search. In: Yao X Parallel problem solving from nature-PPSN VIII. Lecture Notes in Computer Science, vol 3242. Springer, Birmingham, UK. 832–842 (2004)

    Google Scholar 

  65. Zitzler, E.,Thiele, L.: Multiobjective evolutionary algorithms: a comparative case study and the strength pareto approach. IEEE Trans Evol Comput. 3, 257–271 (1999)

    Article  Google Scholar 

  66. Zhang, Q., Li, H.: MOEA/D: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans Evol Comput. 11, 712–731 (2007)

    Article  Google Scholar 

  67. Zou, X., Chen, Y., Liu, M., and Kang, L.: A new evolutionary algorithm for solving many-objective optimization problems. IEEE Trans. on Systems, Man, and Cybernetics: Part B - Cybernetics. 38, 1402–1412 (2008)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the following Brazilian grant-making organizations: CNPq (grant 312551/2019-3), FAPESP (grant 2013/07375-0), CAPES (Finance Code 001), UNESP-PROPE and UNESP-FUNDUNESP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dylan F. Jones .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jones, D.F., Florentino, H.O. (2022). Multi-Objective Optimization: Methods and Applications. In: Salhi, S., Boylan, J. (eds) The Palgrave Handbook of Operations Research . Palgrave Macmillan, Cham. https://doi.org/10.1007/978-3-030-96935-6_6

Download citation

Publish with us

Policies and ethics