Skip to main content
Log in

The convergence rate of the sandwich algorithm for approximating convex functions

Die Konvergenzrate des Sandwich-Algorithmus zur Approximation konvexer Funktionen

  • Published:
Computing Aims and scope Submit manuscript

Abstract

The Sandwich algorithm approximates a convex function of one variable over an interval by evaluating the function and its derivative at a sequence of points. The connection of the obtained points is a piecewise linear upper approximation, and the tangents yield a piecewise linear lower approximation. Similarly, a planar convex figure can be approximated by convex polygons.

Different versions of the Sandwich algorithm use different rules for selecting the next evaluation point. We consider four natural rules (interval bisection, slope bisection, maximum error rule, and chord rule) and show that the global approximation error withn evaluation points decreases by the order ofO(1/n 2), which is optimal.

By special examples we show that the actual performance of the four rules can be very different from each other, and we report computational experiments which compare the performance of the rules for particular functions.

Zusammenfassung

Der Sandwich-Algorithmus approximiert eine konvexe Funktion einer Variablen über einem Intervall, indem er die Funktion und ihre Ableitung an einer Folge von Stützstellen ausrechnet. Die Verbindung der Punkte ergibt eine stückweise lineare obere Approximation, und die Tangenten liefern eine stückweise lineare untere Approximation. Auf ähnliche Art kann man einen konvexen Bereich der Ebene durch konvexe Polygone approximieren.

Verschiedene Versionen des Sandwich-Algorithmus unterscheiden sich durch die Regel, nach der sie die nächste Stützstelle bestimmen. Wir zeigen für vier natürliche Regeln (Intervallhalbierung, Steigungshalbierung, maximaler-Fehler-Regel und Sehnenregel), daß der globale Approximationsfehler mit der Anzahln der Stützstellen mit der bestmöglichen OrdnungO(1/n 2) abnimmt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aneja, Y. P., Nair, K. P. K.: Bicriteria transportation problem. Management Science25, 73–78 (1979).

    Google Scholar 

  • Archimedes: Quadratura parabolae, In: Heiberg, J. L. (ed.) Archimedis opera omnia, vol. II, Leipzig: B. G. Teubner 1913, pp. 261–315.

    Google Scholar 

  • Vladimir Igorevič Arnol'd: Mathematical methods of classical mechanics. New York, Berlin, Heidelberg: Springer 1978.

    Google Scholar 

  • Boyer, C. B.: A history of mathematics. New York, London, Sidney: Wiley 1968.

    Google Scholar 

  • Burkard, R. E., Hamacher, H., Rote, G.: Sandwich approximation of univariate convex functions with an application to separable convex programming. Naval Research Logistics38, 911–924 (1992).

    Google Scholar 

  • Cantoni, A.: Optimal curve fitting with piecewise linear functions. IEEE Transactions on ComputersC-20, 59–67 (1971).

    Google Scholar 

  • Cole, R., Chee Keng Yap: Shape from probing. J. Algorithms8, 19–38 (1987).

    Google Scholar 

  • Edelsbrunner, H.: Algorithms in combinatorial geometry. Berlin, Heidelberg, New York, Tokyo: Springer 1987.

    Google Scholar 

  • Fleischer, R., Mehlhorn, K., Rote, G., Welzl, E., Yap, C.: On simultaneous inner and outer approximation of shapes. In: Proceedings of the Sixth Annual Symposium on Computational Geometry, Berkeley, California, June 6–8, 1990, Association for Computing Machinery, pp. 216–224.

  • Fleischer, R., Mehlhorn, K., Rote, G., Welzl, E., Yap, C.: Simultaneous inner and outer approximation of shapes. To appear in Algorithmica (1992).

  • Freeman, H., Shapiro, R.: Determining the minimum-area encasing rectangle for an arbitrary closed curve. Communications ACM18, 409–413 (1975).

    Google Scholar 

  • Fruhwirth, B.: Approximation of convex functions and multicriteria linear programs, dissertation. Technische Universität Graz, Institut für Mathematik, August 1991.

  • Fruhwirth, B., Burkard, R. E., Rote, G.: Approximation of convex curves with application to the bicriteria minimum cost flow problem. European J. Operational Research42, 326–338 (1989).

    Google Scholar 

  • Gruber, P. M.: Approximation of convex bodies. In: Gruber, P. M., Wills, J. M. (eds.) Convexity and its applications. Basel, Boston: Birkhäuser 1983, pp. 131–162.

    Google Scholar 

  • Gruber, P. M.: Asymptotic estimates for best and stepwise approximation of convex bodies I, manuscript. Technische Universität Wien, Abteilung für Analysis, 1991.

  • Gruber, P. M.: Aspects of approximation of convex bodies. In: Gruber, P. M., Wills, J. M. (eds.) Handbook of convex geometry. Amsterdam, New York, Oxford, Tokio: North-Holland 1992 (to appear).

    Google Scholar 

  • Gruber, P. M., Kenderov, P.: Approximation of convex bodies by polytopes. Rendiconti Circ. Mat. Palermo, Serie II31, 195–225 (1982).

    Google Scholar 

  • Imai, H., Iri, M.: An optimal algorithm for approximating a piecewise linear function. J. Information Processing9, 159–162 (1986).

    Google Scholar 

  • Imai, H., Iri, M.: Polygonal approximations of a curve—formulations and algorithms. In: Toussaint, G. T. (ed.) Computational morphology—a computational geometric approach to the analysis of form. Amsterdam, New York: North-Holland 1988, pp. 71–86.

    Google Scholar 

  • Do Ba Khang, Okitugu Fujiwara: A new algorithm to find all vertices of a polytope. Oper. Res. Lett.8, 261–264 (1989).

    Google Scholar 

  • Kurozumi, Y., Davis, W. A.: Polygonal approximation by the minimax method. Computer Graphics and Image Processing19, 248–264 (1982).

    Google Scholar 

  • Lew, J. S., Quarles, D. A.: Optimal inscribed polygons in convex curves. Amer. Math. Monthly96, 886–902 (1989).

    Google Scholar 

  • Martelli, G.: Jemmy Twitcher—A life of the fourth Earl of Sandwich, 1718–1792. London: Jonathan Cape 1962.

    Google Scholar 

  • McClure, D. E., Vitale, R. A.: Polygonal approximation of plane convex bodies. J. Math. Anal. Appl.51, 326–358 (1975).

    Google Scholar 

  • Müller, J.: Step by step approximation of plane convex bodies. Archiv der Mathematik57 (1991).

  • Arkadiî Semenovič Nemirovsky and David Borisovič Yudin: Složnost' zadač i effektivnost' metodov optimizatsii, Moscow: Nauka 1979. English translation: Problem complexity and method efficiency in optimization. Chichester, New York, Brisbane, Toronto, Singapore: Wiley 1983.

    Google Scholar 

  • Noltemeier, H.: Sensitivitätsanalyse bei diskreten linearen Optimierungsproblemen. Berlin, Heidelberg, New York: Springer 1970 (Lecture Notes in Operations Research and Mathematical Systems 30).

    Google Scholar 

  • Novak, E.: Deterministic and stochastic error bounds in numerical analysis. Berlin, Heidelberg, New York, London, Paris, Tokyo: Springer 1988 (Lecture Notes in Mathematics 1349).

    Google Scholar 

  • Preparata, F. P., Shamos, M. I.: Computational geometry: an introduction. New York: Springer 1985.

    Google Scholar 

  • Ramer U.: An iterative procedure for the polygonal approximation of plane curves. Computer Graphics and Image Processing1, 244–256 (1972).

    Google Scholar 

  • Rockafellar, R. T.: Convex analysis. Princeton: Princeton University Press 1970.

    Google Scholar 

  • Ruhe G.: Flüsse in Netzwerken—Komplexität und Algorithmen, Dissertation B. Technische Hochschule Leipzig, Sektion Mathematik und Informatik, 1988.

  • Ruhe, G.: Algorithmic aspects of flows in newtorks. Dordrecht: Kluwer 1991.

    Google Scholar 

  • Ruhe, G., Fruhwirth, B.: ε-optimality for bicriteria problems and its application to minimum cost flows. Computing44, 21–34 (1990).

    Google Scholar 

  • Skeina, S. S.: Problems in geometric probing. Algorithmica4, 599–605 (1989).

    Google Scholar 

  • Sonnevend, G.: An optimal sequential algorithm for the uniform approximation of convex functions on [0, 1]2. Appl. Math. Optim.10, 127–142 (1983).

    Google Scholar 

  • Sonnevend, G.: Sequential algorithms of optimal order global error for the uniform recovery of functions with monotone (r−1) derivatives. Analysis Mathematica10, 311–335 (1984).

    Google Scholar 

  • Traub, J. F., Wasilkowski, G. W., Woźniakowski, H.: Information-based complexity. New York, London, Toronto, Sidney, San Francisco: Academic Press 1988.

    Google Scholar 

  • Traub, J. F., Woźniakowski, H.: A general theory of optimal algorithms. New York, London, Toronto, Sidney, San Francisco: Academic Press 1980.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was partially supported by the Fonds zur Förderung der wissenschaftlichen Forschung, Project P7486-Phy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rote, G. The convergence rate of the sandwich algorithm for approximating convex functions. Computing 48, 337–361 (1992). https://doi.org/10.1007/BF02238642

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02238642

AMS 1991 Mathematics Subject Classifications

CR Categories and Subject Descriptors (1987 version)

General Terms

Key words

Navigation