Skip to main content
Log in

A Highly Selective and Sensitive Peptide-Based Fluorescent Ratio Sensor for Ag+

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

A fluorescence ratio sensor based on dansyl-peptide, Dansyl-Glu-Cys-Glu-Glu-Trp-NH2 (D-P5), was efficiently synthesized by Fmoc solid phase peptide synthesis. The sensor exhibits high selectivity and sensitivity for Ag+ over 16 metal ions in 100 mM sodium perchlorate and 50 mM 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid buffer solution by fluorescence resonance energy transfer. The 1:1 binding stoichiometry of the sensor and Ag+ is measured by fluorescence ratio response and the job’s plot. The dissociation constant of the sensor with Ag+ was calculated to be 6.4 × 10−9 M, which indicates that the sensor has an effective binding affinity for Ag+. In addition, the limit of detection of the sensor for Ag+ was determined to be 80 nM, which also indicates that the sensor has a high sensitivity to Ag+. Result showed that the sensor is an excellent Ag+ sensor under neutral condition. Furthermore, this sensor displays good practicality for Ag+ detection in river water samples without performing tedious sample pretreatment, as well as for silver chloride detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The data used to support the findings of this study are included within the article.

References

  1. Calixto S, Ganzherli N, Gulyaev S, Figueroa-Gerstenmaier S (2018) Gelatin as a photosensitive material. Molecules 23:2064

    PubMed Central  Google Scholar 

  2. Li CW, Li QL, Long XY, Li TT, Zhao JX, Zhang K, E SF, Zhang J, Li Z, Yao YG (2017) In situ generation of photosensitive silver halide for improving theconductivity of electrically conductive adhesives. ACS Appl Mater Inter 9:29047–29054

  3. Fromm KM (2011) Give silver a shine. Nat Chem 3:178

    CAS  PubMed  Google Scholar 

  4. Miao P, Tang YG, Wang L (2017) DNA modified Fe3O4@Au magnetic nanoparticles as selective probes for simultaneous detection of heavy metal ions. Acs Appl Mater Inter 93:3940–3947

    Google Scholar 

  5. Hashim MA, Mukhopadhyay S, Sahu JN, Sengupta BJ (2011) Remediation technologies for heavy metal contaminated groundwater. J Environ Manag 92:2355–2388

    CAS  Google Scholar 

  6. Carter KP, Young AM, Palmer AE (2014) Fluorescent sensors for measuring metal ions in living systems. Chem Rev 114:4564–4601

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Qian XH, Xu ZC (2015) Fluorescence imaging of metal ions implicated in diseases. Chem Soc Rev 44:4487–4493

    CAS  PubMed  Google Scholar 

  8. Zhang JF, Zhou Y, Yoon J, Kim JS (2011) Recent progress in fluorescent and colorimetric chemosensors for detection of precious metal ions (silver, gold and platinum ions). Chem Soc Rev 40:3416–3429

    CAS  PubMed  Google Scholar 

  9. Boonkitpatarakul K, Wang J, Niamnont N, Liu B, Mcdonald L, Pang Y, Sukwattanasinitt M (2016) Novel turn-on fluorescent sensors with mega stokes shifts for dual detection of Al3+ and Zn2+. Acs Sens 1:144–150

    CAS  Google Scholar 

  10. Wei Y, Li BM, Wang X, Duan YX (2014) Magnified fluorescence detection of silver(I) ion in aqueous solutions by using nano-graphite-DNA hybrid and DNase I. Biosens Bioelectron 58:276–281

    CAS  PubMed  Google Scholar 

  11. Cao YJ, Wu W, Wang S, Peng H, Hu XG, Yu Y (2016) Monolayer g-C3N4 fluorescent sensor for sensitive and selective colorimetric detection of silver ion from aqueous samples. J Fluoresc 26:739–744

    CAS  PubMed  Google Scholar 

  12. US EPA (1994) “Method 200.8: Determination of trace elements in waters and wastes by inductively coupled plasma-mass spectrometry,” Revision 5.4. Cincinnati, OH. https://www.epa.gov/esam/epa-method-2008-determination-trace-elements-waters-and-wastes-inductively-coupled-plasma-mass

  13. Wan JJ, Duan WX, Chen K, Tao YD, Dang J, Zeng KH, Ge YS, Wu J, Liu D (2018) Selective and sensitive detection of Zn(II) ion using a simple peptide-based sensor. Sensor Actuat B-Chem 255:49–56

    CAS  Google Scholar 

  14. Lin YC, Zheng YF, Guo YC, Yang YL, Li HB, Fang Y, Wang C (2018) Peptide-functionalized carbon dots for sensitive and selective Ca2+ detection. Sensor Actuat B-Chem 273:1654–1659

    CAS  Google Scholar 

  15. Xu JB, Liu N, Hao CW, Han QQ, Duan YL, Wu J (2019) A novel fluorescence “on-off-on” peptide-based chemosensor for imultaneous detection of Cu2+, Ag+ and S2−. Sensor Actuat B-Chem 280:129–137

    CAS  Google Scholar 

  16. Wang B, Li HW, Gao Y, Zhang HY, Wu YQ (2011) A multifunctional fluorescence probe for the detection of cations in aqueous solution: the versatility of probes based on peptides. J Fluoresc 21:1921–1931

  17. Donadio G, Martino RD, Oliva R, Petraccone L, Vecchio PD, Luccia BD, Ricca E, Isticato R, Donato AD, Notomista E (2016) A new peptide-based fluorescent probe selective or zinc(II) and copper(II). J Mater Chem B 4:6979–6988

    CAS  PubMed  Google Scholar 

  18. Wang P, Zhou DG, Chen B (2018) High selective and sensitive detection of Zn(II) using tetrapeptide-based dansyl fluorescent chemosensor and its application in cell imaging. Spectrochim Acta A 204:735–742

    CAS  Google Scholar 

  19. Wang C, Sun LL, Zhao Q (2019) A simple aptamer molecular beacon assay for rapid detection of aflatoxin B1. Chinese Chem Lett 30:1017–1020

    CAS  Google Scholar 

  20. Bayraktutan T (2020) Investigation of photophysical and binding properties of rose bengal dye on graphene oxide and polyethyleneimine-functionalized graphene oxide nanocomposites. Chem Pap 74:3017–3024

    CAS  Google Scholar 

  21. Bayraktutan T (2019) Molecular interaction between cationic polymer polyethyleneimine and rose bengal dye: a spectroscopic study. J Turk Chem Soc Sect A-Chem 6:311–318

    CAS  Google Scholar 

  22. Li G, Tao F, Liu Q, Wang L, Wei Z, Zhu F, Chen W, Sun H, Zhou Y (2016) A highly selective and reversible water-soluble polymer based-colorimetric chemosensor for rapid detection of Cu2+ in pure aqueous solution. New J Chem 40:4513–4518

    CAS  Google Scholar 

  23. Yue QL, Shen TF, Wang JT, Wang L, Xu SL, Li HB, Liu JF (2013) A reusable biosensor for detecting mercury(II) at the subpicomolar level based on “turn-on” resonance light scattering. Chem Commun 49:1750–1752

    CAS  Google Scholar 

  24. Shen TF, Yue QL, Jiang XX, Wang L, Xu SL, Li HB, Gu XH, Zhang SQ, Liu JF (2013) A reusable and sensitive biosensor for total mercury in canned fish based on fluorescence polarization. Talanta 117:81–86

    CAS  PubMed  Google Scholar 

  25. Wang LJ, Jia LP, Ma RN, Jia WL, Wang HS (2017) A colorimetric assay for Hg2+ detection based on Hg2+-induced hybridization chain reactions. Anal Methods 9:5121–5126

    CAS  Google Scholar 

  26. Zhang YF, Li R, Xue QW, Li HB, Liu JF (2015) Colorimetric determination of copper(II) using a polyamine-functionalized gold nanoparticle probe. Microchim Acta 182:1677–1683

    CAS  Google Scholar 

  27. Bayraktutan T, Gür B, Demirbas Ü (2020) Detection of Al3+ and Fe3+ ions with phthalocyanine merocyanine 540 dye-based fluorescence resonance energy transfer. Bull Kor Chem Soc 41:973–980

    CAS  Google Scholar 

  28. Bayraktutan T, Bayraktutan ÖF (2020) A novel turn on fluorescence sensor for determination enoxaparin, a low molecular weight heparin. J Fluoresc 30:1591–1599

    CAS  PubMed  Google Scholar 

  29. Joshi BP, Lohani CR, Lee KH (2010) A highly sensitive and selective detection of Hg(II) in 100% aqueous solution with fluorescent labeled dimerized Cys residues. Org Biomol Chem 8:3220–3226

  30. Yang MH, Lohani CR, Cho H, Lee KH (2011) A methionine-based turn-on chemical sensor for selectively monitoring Hg2+ ions in 100% aqueous solution. Org Biomol Chem 9:2350–2356

    CAS  PubMed  Google Scholar 

  31. Wang P, Wu J, Liu LX, Zhou PP, Ge YS, Liu D, Liu WS, Tang Y (2015) A peptide-based fluorescent chemosensor for measuring cadmium ions in aqueous solutions and live cells. Dalton Trans 44:18057–18064

    CAS  PubMed  Google Scholar 

  32. Chen HX, Zhang JJ, Liu XJ, Gao YM, Ye ZH, Li GX (2014) Colorimetric copper(II) ion sensor based on the conformational change of peptide immobilized onto the surface of gold nanoparticles. Anal Methods 6:2580–2585

    CAS  Google Scholar 

  33. Pang XL, Dong JF, Gao L, Wang L, Yu SB, Kong JM, Li LZ (2020) Dansyl-peptide dualfunctional fluorescent chemosensor for Hg2+ and biothiols. Dyes Pigments 173:107888

    CAS  Google Scholar 

  34. Pang XL, Wang L, Gao L, Feng HY, Kong JM, Li LZ (2019) Multifunctional peptide-based fluorescent chemosensor for detection of Hg2+, Cu2+ and S2− ions. Luminescence 34:585–594

    CAS  PubMed  Google Scholar 

  35. Joshi BP, Lee KH (2008) Synthesis of highly selective fluorescent peptide probes for metal ions: tuning selective metal monitoring with secondary structure. Bioorg Med Chem 16:8501–8509

    CAS  PubMed  Google Scholar 

  36. Joshi BP, Park JY, Lee KH (2014) Recyclable sensitive fluorimetric detection of specific metal ions using a functionalized PEG-PS resin with a fluorescent peptide sensor. Sensor Actuat B-Chem 191:122–129

    CAS  Google Scholar 

  37. In B, Hwang GW, Lee KH (2016) Highly sensitive and selective detection of Al(III) ions in aqueous buffered solution with fluorescent peptide-based sensor. Bioorg Med Chem Lett 26:4477–4482

    CAS  PubMed  Google Scholar 

  38. Tamanini E, Katewa A, Sedger LM, Todd MH, Watkinson M (2009) A synthetically simple, click-generated cyclam-based zinc(II) sensor. Inorg Chem 48:319–324

    CAS  PubMed  Google Scholar 

  39. Tang XL, Peng XH, Dou W, Mao J, Zheng JR, Qin WW, Liu WS, Chang J, Yao XJ (2008) Design of a semirigid molecule as a selective fluorescent chemosensor for recognition of Cd(II). Org Lett 10:3653–3656

  40. Liu ZP, Zhang CL, He WJ, Yang ZH, Gao X, Guo ZJ (2010) A highly sensitive ratiometric fluorescent probe for Cd2+ detection in aqueous solution and living cells. Chem Commun 46:6138–6140

    CAS  Google Scholar 

  41. Wang ZL, Feng HY, Li Y, Xu T, Xue ZC, Li LZ (2015) A high selective fluorescent ratio sensor for Cd2+ based on the interaction of peptide with metal ion. Chinese J Inorg Chem 31:1946–1952

    CAS  Google Scholar 

  42. Li Y, Li LZ, Pu XW, Ma GL, Wang EQ, Kong JM, Liu ZP, Liu YZ (2012) Synthesis of a ratiometric fluorescent peptide sensor for the highly selective detection of Cd2+. Bioorg Med Chem 22:4014–4017

    CAS  Google Scholar 

  43. Pang XL, Gao L, Feng HY, Li XD, Kong JM, Li LZ (2018) A peptide-based multifunctional fluorescent probe for Cu2+, Hg2+ and biothiols. New J Chem 42:15770–15777

    CAS  Google Scholar 

  44. Feng HY, Gao L, Ye XH, Wang L, Xue ZC, Kong JM, Li LZ (2017) Synthesis of a heptapeptide and its application in the detection of mercury(II) ion. Chem Res Chin Univ 33:155–159

    CAS  Google Scholar 

  45. Sfrazzettoa GT, Satrianoa C, Tomaselli GA, Rizzarelli E (2016) Synthetic fluorescent probes to map metallostasis and intracellular fate of zinc and copper. Coord Chem Rev 311:125–167

    Google Scholar 

  46. Wu JC, Zou Y, Li CY, Sicking W, Piantanida I, Yi T, Schmuck C (2012) A molecular peptide beacon for the ratiometric sensing of nucleic acids. J Am Chem Soc 134:1958–1961

    CAS  PubMed  Google Scholar 

  47. Schwarzenbach G (1952) Der chelateffekt. Helv Chim Acta 35:2344–2359

    CAS  Google Scholar 

  48. Xu G, Wang GF, He XP, Zhu YH, Chen L, Zhang XJ (2013) An ultrasensitive electrochemical method for detection of Ag+ based on cyclic amplification of exonuclease III activity on cytosine-Ag+-cytosine. Analyst 138:6900–6906

    CAS  PubMed  Google Scholar 

  49. Wang HY, Lu QJ, Li MX, Li H, Liu YL, Li HT, Zhang YY, Yao SZ (2018) Electrochemically prepared oxygen and sulfur co-doped graphitic carbon nitride quantum dots for fluorescence determination of copper and silver ions and biothiols. Anal Chim Acta 1027:121–129

    CAS  PubMed  Google Scholar 

  50. Chen XX, Hong F, Zhang WL, Wu DZ, Li TH, Hu FT, Gan N, Lin JY, Wang QQ (2019) Microchip electrophoresis based multiplexed assay for silver and mercury ions simultaneous detection in complex samples using a stirring bar modified with encoded hairpin probes for specific extraction. J Chromatogr A 1589:173–181

    CAS  PubMed  Google Scholar 

  51. Ye F, Liang XM, Xu KX, Pang XX, Chai Q, Fu Y (2019) A novel dithiourea-appended naphthalimide “on-off” fluorescent probe for detecting Hg2+ and Ag+ and its application in cell imaging. Talanta 200:494–502

    CAS  PubMed  Google Scholar 

  52. Safavi A, Ahmadi R, Mohammadpour Z (2017) Colorimetric sensing of silver ion based on anti aggregation of gold nanoparticles. Sensor Actuat B-Chem 242:609–615

    CAS  Google Scholar 

  53. Kim JH, Kim KB, Park JS, Min N (2017) Single cytosine-based electrochemical biosensor for low-cost detection of silver ions. Sensor Actuat B-Chem 245:741–746

    CAS  Google Scholar 

  54. Zhao XE, Lei CH, Gao Y, Gao H, Zhu SY, Yang X, You JM, Wang H (2017) A ratiometric fluorescent nanosensor for the detection of silver ions using graphene quantum dots. Sensor Actuat B-Chem 253:239–246

    CAS  Google Scholar 

  55. He LY, Lu YX, Wang FY, Jing WJ, Chen Y, Liu YY (2018) Colorimetric sensing of silver ions based on glutathione-mediated MnO2 nanosheets. Sensor Actuat B-Chem 254:468–474

    CAS  Google Scholar 

  56. Shahamirifard SA, Ghaedi M, Hajati S (2018) A new silver (I) ions optical sensor based on nanoporous thin films of sol-gel by rose bengal dye. Sensor Actuat B-Chem 259:20–29

    CAS  Google Scholar 

  57. Zhang YW, Ye AY, Yao YW, Yao C (2019) A sensitive near-infrared fluorescent probe for detecting heavy metal Ag+ in water samples. Sensors 19:247

    CAS  Google Scholar 

  58. Muhlradt PF, Kie BM, Meyer H (1997) Isolation, structure elucidation, and synthesis of a macrophage stimulatory lipopeptide from mycoplasma fermentans acting at picomolar concentration. J Exp Med 185:1951–1958

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Fields GB, Nobel RL (1990) Solid phase peptide synthesis utilizing 9-fluorenylmethoxycarbonyl amino acids. Int J Pept Protein Res 35:161–214

    CAS  PubMed  Google Scholar 

  60. Liu ZP, He WJ, Guo Z (2013) Metal coordination in photoluminescent sensing. Chem Soc Rev 42:1568–1600

    PubMed  Google Scholar 

  61. Godwin HA, Berg JM (1996) A fluorescent zinc probe based on metal-induced peptide folding. J Am Chem Soc 118:6514–6515

    CAS  Google Scholar 

  62. US Environmental Protection Agency, EPA Office of Water, Washington, DC. https://www.epa.gov/ground-water-and-drinking-water/national-primary-rinking-water-regulations, EPA 816-F- 09-0004, May 2009

Download references

Funding

This work was supported by the Scientific Research Foundation of Liaocheng University, China (No. 318011919), and the National Natural Science Foundation of China (No. 21974068).

Author information

Authors and Affiliations

Authors

Contributions

Shuaibing Yu and Zhaolu Wang contributed equally. Methodology, Conceptualization, Investigation, Writing - original draft. Lei Gao: Investigation, Writing - original draft. Bo Zhang: Investigation. Lei Wang: Visualization, Project administration. Jinming Kong: Methodology, Writing - review & editing. Lianzhi Li: Resources, Supervision, Funding acquisition, Writing - review & editing.

Corresponding author

Correspondence to Lianzhi Li.

Ethics declarations

Conflict of Interest

There are no conflicts to declare.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 25 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, S., Wang, Z., Gao, L. et al. A Highly Selective and Sensitive Peptide-Based Fluorescent Ratio Sensor for Ag+. J Fluoresc 31, 237–246 (2021). https://doi.org/10.1007/s10895-020-02653-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-020-02653-5

Keywords

Navigation