Skip to main content
Log in

Developing an Analytical Method Based on Graphene Quantum Dots for Quantification of Deferiprone in Plasma

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

In the world of nanotechnology, graphene quantum dots (GQDs) have been considerably employed in numerous optical sensing and bioanalytical applications. Herein, a simple and cost-efficient methodology was developed to the quantification of deferiprone in plasma samples by utilizing the selective interaction of the GQDs and drug in the presence of Fe3+ ions. GQDs were synthesized by a bottom-up technique as an advantageous fluorescent probe. Increasing levels of deferiprone ranging from 5 to 50 mg.L−1, leads to significant fluorescence quenching of GQDs. In addition, the calibration curve was revealed a linear response in this range with a sensitivity of 5 mg.L−1. The method validation was carried out according to the FDA guidelines to confirm the accuracy, precision, stability and selectivity of the developed method. The results show that this green and low-cost fluorescent probe could be used for the analysis of deferiprone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Xie R, Wang Z, Zhou W, Liu Y, Fan L, Li Y et al (2016) Graphene quantum dots as smart probes for biosensing. Anal Methods 8(20):4001–4006. https://doi.org/10.1039/c6ay00289g

    Article  CAS  Google Scholar 

  2. Lee JS, Youn YH, Kwon IK, Ko NR (2018) Recent advances in quantum dots for biomedical applications. J Pharma Invest 48(2):209–214. https://doi.org/10.1007/s40005-018-0387-3

    Article  CAS  Google Scholar 

  3. Liu JJ, Zhang XL, Cong ZX, Chen ZT, Yang HH, Chen GN (2013) Glutathione-functionalized graphene quantum dots as selective fluorescent probes for phosphate-containing metabolites. Nanoscale. 5(5):1810–1815. https://doi.org/10.1039/c3nr33794d

    Article  CAS  PubMed  Google Scholar 

  4. Kontoghiorghes GJ, Pattichis K, Neocleous K, Kolnagou A (2004) The design and development of deferiprone (L1) and other iron chelators for clinical use: targeting methods and application prospects. Curr Med Chem 11(16):2161–2183. https://doi.org/10.2174/0929867043364685

    Article  CAS  PubMed  Google Scholar 

  5. Barman Balfour JA, Foster RH (1999) Deferiprone. A review of its clinical potential in iron overload in β-thalassaemia major and other transfusion-dependent diseases. Drugs. 58(3):553–578. https://doi.org/10.2165/00003495-199958030-00021

    Article  CAS  PubMed  Google Scholar 

  6. Lin HJ, Kou HS, Chiou SS, Wu SM (2016) Therapeutic deferoxamine and deferiprone monitoring in β-thalassemia patients’ plasma by field-amplified sample injection and sweeping in capillary electrophoresis. Electrophoresis. 37(14):2091–2096. https://doi.org/10.1002/elps.201600086

    Article  CAS  PubMed  Google Scholar 

  7. Yadegari H, Jabbari A, Heli H, Moosavi-Movahedi AA, Majdi S (2008) Electrochemistry of deferiprone as an orally active iron chelator and HIV-1 replication inhibitor and its determination. J Braz Chem Soc 19(5):1017–1022. https://doi.org/10.1590/S0103-50532008000500029

    Article  CAS  Google Scholar 

  8. Song TS, Hsieh YW, Peng CT, Liu CH, Chen TL, Hour MJ (2012) Development of a fast LC-MS/MS assay for the determination of deferiprone in human plasma and application to pharmacokinetics. Biomed Chromatogr 26(12):1575–1581. https://doi.org/10.1002/bmc.2734

    Article  CAS  PubMed  Google Scholar 

  9. Abbas M, Nawaz R, Iqbal T, Alim M, Asi MR (2012) Quantitative determination of deferiprone in human plasma by reverse phase high performance liquid chromatography and its application to pharmacokinetic study. Pak J Pharm Sci 25(2):343–348

    CAS  PubMed  Google Scholar 

  10. El-Jammal A, Templeton DM (1994) Reversed-phase high-performance liquid chromatography of non-transferrin-bound iron and some hydroxypyridone and hydroxypyrone chelators. J Chromatogr B Biomed Sci Appl 658(1):121–127. https://doi.org/10.1016/0378-4347(94)00225-8

    Article  CAS  Google Scholar 

  11. Goddard J, Kontoghiorghes G (1990) Development of an HPLC method for measuring orally administered 1-substituted 2-alkyl-3-hydroxypyrid-4-one iron chelators in biological fluids. Clin Chem 36(1):5–8

    Article  CAS  Google Scholar 

  12. Guo F, Thiessen JJ, Tesoro A, Spino M (2001) High-performance liquid chromatographic assays for a second-generation novel oral iron chelator (APCP363) and their application to pharmacokinetic studies in rats. J Chromatogr B Biomed Sci Appl 751(1):107–115. https://doi.org/10.1016/S0378-4347(00)00457-6

    Article  CAS  PubMed  Google Scholar 

  13. Epemolu RO, Singh S, Hider RC, Damani LA (1990) Chromatography of 3-hydroxypyridin-4-ones: novel orally active iron chelators. J Chromatogr A 519(1):171–178. https://doi.org/10.1016/0021-9673(90)85145-L

    Article  CAS  Google Scholar 

  14. Durán GM, Benavidez TE, Contento AM, Ríos A, García CD (2017) Analysis of penicillamine using cu-modified graphene quantum dots synthesized from uric acid as single precursor. J Pharm Anal 7(5):324–331. https://doi.org/10.1016/j.jpha.2017.07.002

    Article  PubMed  PubMed Central  Google Scholar 

  15. Bansal S, DeStefano A (2007) Key elements of bioanalytical method validation for small molecules. AAPS J 9(1). https://doi.org/10.1208/aapsj0901011

    Article  CAS  Google Scholar 

  16. Ozkan SA (2018) Analytical method validation: the importance for pharmaceutical analysis. Pharm Sci 24(1):1–2. https://doi.org/10.15171/ps.2018.01

    Article  Google Scholar 

  17. Zhou L, Geng J, Liu B (2013) Graphene quantum dots from polycyclic aromatic hydrocarbon for bioimaging and sensing of Fe3+ and hydrogen peroxide. Part Part Syst Charact 30(12):1086–1092. https://doi.org/10.1002/ppsc.201300170

    Article  CAS  Google Scholar 

  18. Zhu S, Meng Q, Wang L, Zhang J, Song Y, Jin H et al (2013) Highly photoluminescent carbon dots for multicolor patterning, sensors, and bioimaging. Angew Chem Int Ed 52(14):3953–3957. https://doi.org/10.1002/anie.201300519

    Article  CAS  Google Scholar 

  19. Shayanfar A, Ershadi S (2019) Developing new criteria for validity evaluation of analytical methods. J AOAC Int 106(6):1908–1916. https://doi.org/10.5740/jaoacint.19-0007

    Article  CAS  Google Scholar 

  20. Ershadi S, Shayanfar A (2018) Are LOD and LOQ reliable parameters for sensitivity evaluation of spectroscopic methods? J AOAC Int 101(4):1212–1213. https://doi.org/10.5740/jaoacint.17-0363

    Article  CAS  PubMed  Google Scholar 

  21. Xu FH, Huang M, Zhang QY (2017) Determination of pregabalin in human plasma by LC-MS/MS and its application to pharmacokinetics study. Chin Pharm J (China) 52(3):221–225. https://doi.org/10.11669/cpj.2017.03.012

    Article  CAS  Google Scholar 

  22. Regenthal R, Krueger M, Koeppel C, Preiss R (1999) Drug levels: therapeutic and toxic serum/plasma concentrations of common drugs. J Clin Monit Comput 15(7–8):529–544

    Article  CAS  Google Scholar 

  23. Knadler MP, Lobo E, Chappell J, Bergstrom R (2011) Duloxetine: clinical pharmacokinetics and drug interactions. Clin Pharmacokinet 50(5):281–294. https://doi.org/10.2165/11539240-000000000-00000

    Article  CAS  Google Scholar 

  24. Bastos ML, Kananen GE, Young RM, Monforte JR, Sunshine I (1970) Detection of basic organic drugs and their metabolites in urine. Clin Chem 16(11):931–940

    Article  CAS  Google Scholar 

  25. Rodriguez GI, Kuhn JG, Weiss GR, Hilsenbeck SG, Eckardt JR, Thurman A et al (1998) A bioavailability and pharmacokinetic study of oral and intravenous hydroxyurea. Blood. 91(5):1533–1541

    Article  CAS  Google Scholar 

  26. Malik A, Firke SD, Patil RR, Shirkhedkar AA, Surana SJ (2019) Determination of Iron chelating agents by analytical methods: a review. Crit Rev Anal Chem. https://doi.org/10.1080/10408347.2019.1620095

    Article  Google Scholar 

  27. Mohamadian E, Shayanfar A, Khoubnasabjafari M, Jouyban-Gharamaleki V, Ghaffary S, Jouyban A (2017) Analysis of deferiprone in exhaled breath condensate using silver nanoparticle-enhanced terbium fluorescence. Anal Methods 9(38):5640–5645. https://doi.org/10.1039/c7ay01715d

    Article  CAS  Google Scholar 

  28. Manzoori JL, Amjadi M, Soleymani J, Tamizi E, Rezamand A, Jouyban A (2012) Determination of deferiprone in urine and serum using a terbium-sensitized luminescence method. Lumin. 27(4):268–273. https://doi.org/10.1002/bio.1344

    Article  CAS  Google Scholar 

  29. Bellanti F, Danhof M, Pasqua OD (2014) Population pharmacokinetics of deferiprone in healthy subjects. Br J Clin Pharmacol 78(6):1397–1406. https://doi.org/10.1111/bcp.12473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work is a part of R.K’s MSc thesis (No. 21) submitted at Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran and supported by Vice Chancellor of for Research of Tabriz University of Medical Sciences, Tabriz, Iran (code: 61288).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Shayanfar.

Ethics declarations

Conflict of Interests

The authors claim that there is no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 41.7 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaviani, R., Ghaffary, S., Jouyban, A. et al. Developing an Analytical Method Based on Graphene Quantum Dots for Quantification of Deferiprone in Plasma . J Fluoresc 30, 591–600 (2020). https://doi.org/10.1007/s10895-020-02523-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-020-02523-0

Keywords

Navigation