Skip to main content

Advertisement

Log in

Emerging biosensor probes for glycated hemoglobin (HbA1c) detection

  • Review Article
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Glycated hemoglobin (HbA1c), originating from the non-enzymatic glycosylation of βVal1 residues in hemoglobin (Hb), is an essential biomarker indicating average blood glucose levels over a period of 2 to 3 months without external environmental disturbances, thereby serving as the gold standard in the management of diabetes instead of blood glucose testing. The emergence of HbA1c biosensors presents affordable, readily available options for glycemic monitoring, offering significant benefits to small-scale laboratories and clinics. Utilizing nanomaterials coupled with high-specificity probes as integral components for recognition, labeling, and signal transduction, these sensors demonstrate exceptional sensitivity and selectivity in HbA1c detection. This review mainly focuses on the emerging probes and strategies integral to HbA1c sensor development. We discussed the advantages and limitations of various probes in sensor construction as well as recent advances in diverse sensing strategies for HbA1c measurement and their potential clinical applications, highlighting the critical gaps in current technologies and future needs in this evolving field.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Copyright 2016 American Chemical Society. b Detection of HbA1c on BA-modified ZIF-8 nanoparticles with permission from reference [45]. Copyright 2023 American Chemical Society. c Glycoprotein fluorescent speed sensing by newly synthesized boronic complex probe and chip supramolecular electrophoresis, with permission from reference [49]. Copyright 2020 Elsevier. d Boronate-functionalized hydrogel as a novel biosensing interface for the HbA1c based on the competitive binding with signaling glycoprotein, with permission from reference [53]. Copyright 2017 Elsevier

Fig. 3

Copyright 2018 Elsevier. b Naked-Eye Readout Distance Quantitative LFIA Based on the Permeability Changes of Enzyme-Catalyzed Hydrogelation, adapted with permission from reference [63]. Copyright 2023 American Chemical Society. c Simple diagnosis of HbA1c using the dual-plasmonic platform integrated with localized surface plasmon resonance (LSPR) and SERS, adapted with permission from reference [65]. Copyright 2017 Elsevier. d Dual working electrode biosensor capable of label-free detection of blood glucose and HbA1c concentrations from a single sample drop, adapted with permission from reference [70]. Copyright 2023 Elsevier

Fig. 4

Copyright 2022 Elsevier. b An integrated microfluidic system for measurement of HbA1c levels by using an aptamer–antibody assay on magnetic beads, with permission from reference [89]. Copyright 2015 Elsevier. c A sensitive electrochemiluminescence immunoassay for HbA1c based on Ru(bpy)32+ encapsulated mesoporous polydopamine nanoparticles, with permission from reference [90]. Copyright 2020 Elsevier. d Fluorescence/electrochemiluminescence approach for instant detection of HbA1c index, with permission from reference [98] Copyright 2022 Elsevier

Fig. 5

Copyright 2016 Elsevier. b A quartz crystal microbalance-based biosensor for enzymatic detection of HbA1c, with permission from reference [105]. Copyright 2018 Elsevier. c An amperometric biosensor for specific detection of HbA1c based on recombinant engineered FPOx, adapted with permission from reference [106]. Copyright 2020 Elsevier. d Affinity sensor for HbA1c based on single-walled carbon nanotube FET and FABP, with permission from reference [122]. Copyright 2019 Elsevier

Fig. 6

Copyright 2019 Elsevier. b Negative selection of MIPs to create high specificity ligands for HbA1c, with permission from reference [134]. Copyright 2023 Elsevier. c Tungsten disulfide decorated SPEs for sensing HbA1c, adapted with permission from reference [135]. Copyright 2022 American Chemical Society

Fig. 7

Copyright 2019 American Association for the Advancement of Science. b Microchip liquid chromatography system in gradient elution mode, with permission from reference [148]. Copyright 2024 Elsevier

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

Abbreviations

AAL:

Aleuria aurantia

APBA:

3-Aminophenylboric acid

APTMS:

(3-Aminopropyl) trimethoxy silane

AQBA:

Anthraquinone boronic acid

AuAg:

Gold-silver

AuNC:

Gold nanocluster

AuNP:

Gold nanoparticle

BA:

Boric acid

BBV:

N,N′-4,4′-bis(benzylboronic acid)-bipyridinium dibromide

BSA:

Bovine serum albumin

C-Ab:

Capture antibody

CdTe:

Cadmium telluride

CE:

Capillary electrophoresis

CHIT:

Chitosan

CL:

Chemiluminescence

CNF:

Carbon nanofibers

CPBA:

4-Carboxyphenylboronic acid

CP@Al foils:

Carbon paste–coated aluminum foils

CSE:

Chip supramolecular electrophoresis

DWSPCE:

Dual-working screen-printed carbon electrode

ECL:

Electrochemiluminescence

eFBG:

Etched fiber Bragg grating

EIS:

Electrochemical impedance spectroscopy

ELISA:

Enzyme-linked immunosorbent assay

FABP:

Fructosyl amino acid binding protein

FAOx:

Fructosyl amino acid oxidase

FDM:

Fused deposition modeling

FET:

Field-effect transistor

FITC:

Fluorescein isothiocyanate

FN6K:

Fructosamine 6-kinase

FPOx:

Fructosyl peptide oxidase

FTO:

Fluorine-doped tin oxide

FV:

Fructosyl valine

FVH:

Fructosyl valine histidine

GO :

Graphene oxide

GPP:

N-Glycosylated pentapeptide

Hb:

Hemoglobin

HbA1c:

Glycated hemoglobin

H2O2 :

Hydrogen peroxide

HPLC:

High-performance liquid chromatography

HPTS:

8-Hydroxypyrene-1,3,6-trisulfonic acid trisodium salt

IDAs:

Interdigitated gold microelectrode arrays

ITO:

Indium tin oxide

LC:

Liquid crystal

LFIA:

Lateral flow immunoassay

LRET:

Luminescence resonance energy transfer

LSPR:

Localized surface plasmon resonance

MDPA:

Mesoporous dopamine

MIPs:

Molecularly imprinted polymers

MNPs:

Magnetic nanoparticles

MPBA:

4-Mercaptophenyl boronic acid

MPDA:

Mesoporous dopamine

MS:

Mass spectrometry

MWCNT:

Multi-walled carbon nanotube

Nf:

Nafion

PABA:

Poly (aminophenylboronic acid)

PBA:

Phenylboronic acid

PBS:

Phosphate-buffered saline

PEI:

Polyethylenimine

PET:

Polyethylene terephthalate

PhB:

Poly rhodamine b

POCT:

Point-of-care testing

pTTBA:

Poly (terthiophene benzoic acid)

QCM:

Quartz crystal microbalance

QD:

Quantum dot

rGO:

Reduced graphene oxide

SELEX:

Systematic evolution of ligands by exponential enrichment

SiNW-FET:

Silicon nanowire field effect transistor

SPCE:

Screen-printed carbon electrode

SPEs:

Screen-printed electrodes

SPR:

Surface plasmon resonance

SWCNT:

Single-walled carbon nanotubes

TMC:

Trimethyl chitosan

TiNT:

Titanium dioxide nanotubes

TiO2 :

Titanium dioxide

TPA:

Tripropylamine

T3BA:

Thiophene-3-boric acid

VPBA:

4-Vinylphenylboronic acid

References

  1. Mensing C, Walker EA (2006) The art and science of diabetes self-management education : a desk reference for healthcare professionals. American Association of Diabetes Educators, Chicago

    Google Scholar 

  2. Wu J, Zhou Y, Hu H, et al (2022) Effects of β-carotene on glucose metabolism dysfunction in humans and type 2 diabetic rats. Acta Mater Medica 1:. https://doi.org/10.15212/AMM-2021-0009

  3. Zhang H, Hua X, Song J (2021) Phenotypes of cardiovascular diseases: current status and future perspectives. Phenomics 1:229–241. https://doi.org/10.1007/s43657-021-00022-1

    Article  PubMed  PubMed Central  Google Scholar 

  4. Sun H, Saeedi P, Karuranga S et al (2022) IDF Diabetes Atlas: global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res Clin Pract 183:109119. https://doi.org/10.1016/j.diabres.2021.109119

    Article  PubMed  Google Scholar 

  5. Klein KR, Buse JB (2020) The trials and tribulations of determining HbA1c targets for diabetes mellitus. Nat Rev Endocrinol 16:717–730. https://doi.org/10.1038/s41574-020-00425-6

    Article  CAS  PubMed  Google Scholar 

  6. Consultation WHO (2011) Use of glycated haemoglobin (HbA1c) in the diagnosis of diabetes mellitus. Diabetes Res Clin Pract 93:299–309. https://doi.org/10.1016/j.diabres.2011.03.012

    Article  CAS  Google Scholar 

  7. Rahbar S (1968) An abnormal hemoglobin in red cells of diabetics. Clin Chim Acta 22:296–298. https://doi.org/10.1016/0009-8981(68)90372-0

    Article  CAS  PubMed  Google Scholar 

  8. Sherwani SI, Khan HA, Ekhzaimy A et al (2016) Significance of HbA1c test in diagnosis and prognosis of diabetic patients. Biomark Insights 11:BMI.S38440. https://doi.org/10.4137/BMI.S38440

    Article  Google Scholar 

  9. Lenters-Westra E, Schindhelm RK, Bilo HJ, Slingerland RJ (2013) Haemoglobin A1c: historical overview and current concepts. Diabetes Res Clin Pract 99:75–84. https://doi.org/10.1016/j.diabres.2012.10.007

    Article  CAS  PubMed  Google Scholar 

  10. American Diabetes Association (2010) Diagnosis and classification of diabetes mellitus. Diabetes Care 33:S62–S69. https://doi.org/10.2337/dc10-S062

    Article  PubMed Central  Google Scholar 

  11. ElSayed NA, Aleppo G, Aroda VR et al (2022) 2. Classification and diagnosis of diabetes: Standards of Care in Diabetes—2023. Diabetes Care 46:S19–S40. https://doi.org/10.2337/dc23-S002

    Article  PubMed Central  Google Scholar 

  12. Hoelzel W, Weykamp C, Jeppsson J-O et al (2004) IFCC Reference System for measurement of hemoglobin A1c in human blood and the national standardization schemes in the United States, Japan, and Sweden: A Method-Comparison Study. Clin Chem 50:166–174. https://doi.org/10.1373/clinchem.2003.024802

    Article  CAS  PubMed  Google Scholar 

  13. Sadighbayan D, Hasanzadeh M, Ghafar-Zadeh E (2020) Biosensing based on field-effect transistors (FET): recent progress and challenges. TrAC Trends Anal Chem 133:116067. https://doi.org/10.1016/j.trac.2020.116067

    Article  CAS  Google Scholar 

  14. Schnedl WJ, Krause R, Halwachs-Baumann G et al (2000) Evaluation of HbA1c determination methods in patients with hemoglobinopathies. Diabetes Care 23:339–344. https://doi.org/10.2337/diacare.23.3.339

    Article  CAS  PubMed  Google Scholar 

  15. Schnedl WJ, Lahousen T, Wallner SJ et al (2005) Silent hemoglobin variants and determination of HbA1c with the high-resolution program of the HPLC HA-8160 hemoglobin analyzer. Clin Biochem 38:88–91. https://doi.org/10.1016/j.clinbiochem.2004.09.016

    Article  CAS  PubMed  Google Scholar 

  16. Grant DA, Dunseath GJ, Churm R, Luzio SD (2017) Comparison of a point-of-care analyser for the determination of HbA1c with HPLC method. Pract Lab Med 8:26–29. https://doi.org/10.1016/j.plabm.2017.04.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Song Z, Tian E (2013) Comparative study of two proteases for mass spectrometric method for the determination HbA1C. Chin J Lab Med Volume 36: https://doi.org/10.3760/cma.j.issn.1009-9158.2013.08.014

  18. Kaiser P, Akerboom T, Molnar P, Reinauer H (2008) Modified HPLC-electrospray ionization/mass spectrometry method for HbA1c based on IFCC Reference Measurement Procedure. Clin Chem 54:1018–1022. https://doi.org/10.1373/clinchem.2007.100875

    Article  CAS  PubMed  Google Scholar 

  19. Lapolla A, Fedele D, Plebani M et al (1999) Evaluation of glycated globins by matrix-assisted laser desorption/ionization mass spectrometry. Clin Chem 45:288–290. https://doi.org/10.1093/clinchem/45.2.288

    Article  CAS  PubMed  Google Scholar 

  20. Barman I, Dingari NC, Kang JW et al (2012) Raman spectroscopy-based sensitive and specific detection of glycated hemoglobin. Anal Chem 84:2474–2482. https://doi.org/10.1021/ac203266a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Poliker E, Zemskikh B, Koshechkin K (2023) Development of a portable spectrophotometer using artificial neural networks for non-invasive determination of glycated hemoglobin in blood by Raman spectroscopy. Digit Diagn 4:102–104. https://doi.org/10.17816/DD430359

    Article  Google Scholar 

  22. Pandey R, Singh SP, Zhang C et al (2018) Label-free spectrochemical probe for determination of hemoglobin glycation in clinical blood samples. J Biophotonics 11:e201700397. https://doi.org/10.1002/jbio.201700397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Pundir CS, Chawla S (2014) Determination of glycated hemoglobin with special emphasis on biosensing methods. Anal Biochem 444:47–56. https://doi.org/10.1016/j.ab.2013.09.023

    Article  CAS  PubMed  Google Scholar 

  24. Ang SH, Thevarajah M, Alias Y, Khor SM (2015) Current aspects in hemoglobin A1c detection: a review. Clin Chim Acta 439:202–211. https://doi.org/10.1016/j.cca.2014.10.019

    Article  CAS  PubMed  Google Scholar 

  25. Sharma P, Panchal A, Yadav N, Narang J (2020) Analytical techniques for the detection of glycated haemoglobin underlining the sensors. Int J Biol Macromol 155:685–696. https://doi.org/10.1016/j.ijbiomac.2020.03.205

    Article  CAS  PubMed  Google Scholar 

  26. Mach KE, Wong PK, Liao JC (2011) Biosensor diagnosis of urinary tract infections: a path to better treatment? Trends Pharmacol Sci 32:330–336. https://doi.org/10.1016/j.tips.2011.03.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Boonyasit Y, Laiwattanapaisal W, Chailapakul O et al (2016) Boronate-modified interdigitated electrode array for selective impedance-based sensing of glycated hemoglobin. Anal Chem 88:9582–9589. https://doi.org/10.1021/acs.analchem.6b02234

    Article  CAS  PubMed  Google Scholar 

  28. Li Z, Li J, Dou Y et al (2021) A carbon-based antifouling nano-biosensing interface for label-free POCT of HbA1c. Biosensors 11:118. https://doi.org/10.3390/bios11040118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Park J-Y, Chang B-Y, Nam H, Park S-M (2008) Selective electrochemical sensing of glycated hemoglobin (HbA1c) on thiophene-3-boronic acid self-assembled monolayer covered gold electrodes. Anal Chem 80:8035–8044. https://doi.org/10.1021/ac8010439

    Article  CAS  PubMed  Google Scholar 

  30. Hsieh K-M, Lan K-C, Hu W-L et al (2013) Glycated hemoglobin (HbA1c) affinity biosensors with ring-shaped interdigital electrodes on impedance measurement. Biosens Bioelectron 49:450–456. https://doi.org/10.1016/j.bios.2013.05.059

    Article  CAS  PubMed  Google Scholar 

  31. Liu J-T, Chen L-Y, Shih M-C et al (2008) The investigation of recognition interaction between phenylboronate monolayer and glycated hemoglobin using surface plasmon resonance. Anal Biochem 375:90–96. https://doi.org/10.1016/j.ab.2008.01.004

    Article  CAS  PubMed  Google Scholar 

  32. Ahn K-S, Lee JH, Park J-M et al (2016) Luminol chemiluminescence biosensor for glycated hemoglobin (HbA1c) in human blood samples. Biosens Bioelectron 75:82–87. https://doi.org/10.1016/j.bios.2015.08.018

    Article  CAS  PubMed  Google Scholar 

  33. Mandali PK, Prabakaran A, Annadurai K, Krishnan UM (2023) Trends in quantification of HbA1c using electrochemical and point-of-care analyzers. Sensors 23:1901. https://doi.org/10.3390/s23041901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yuan F, Xia Y, Lu Q et al (2022) Recent advances in inorganic functional nanomaterials based flexible electrochemical sensors. Talanta 244:123419. https://doi.org/10.1016/j.talanta.2022.123419

    Article  CAS  PubMed  Google Scholar 

  35. Pandey R, Dingari NC, Spegazzini N et al (2015) Emerging trends in optical sensing of glycemic markers for diabetes monitoring. TrAC Trends Anal Chem 64:100–108. https://doi.org/10.1016/j.trac.2014.09.005

    Article  CAS  Google Scholar 

  36. Jain G, Joshi AM, Maddila RK, Vipparthi SK (2021) A review of non-invasive HbA1c and blood glucose measurement methods. In: 2021 IEEE International Symposium on Smart Electronic Systems (iSES), pp 339–342. https://doi.org/10.1109/iSES52644.2021.00086

  37. Cui F, Zhou HS (2020) Diagnostic methods and potential portable biosensors for coronavirus disease 2019. Biosens Bioelectron 165:112349. https://doi.org/10.1016/j.bios.2020.112349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kaur J, Jiang C, Liu G (2019) Different strategies for detection of HbA1c emphasizing on biosensors and point-of-care analyzers. Biosens Bioelectron 123:85–100. https://doi.org/10.1016/j.bios.2018.06.018

    Article  CAS  PubMed  Google Scholar 

  39. Shoaie N, Daneshpour M, Azimzadeh M et al (2019) Electrochemical sensors and biosensors based on the use of polyaniline and its nanocomposites: a review on recent advances. Microchim Acta 186:465. https://doi.org/10.1007/s00604-019-3588-1

    Article  CAS  Google Scholar 

  40. Chen H-H, Wu C-H, Tsai M-L et al (2012) Detection of total and A1c-glycosylated hemoglobin in human whole blood using sandwich immunoassays on polydimethylsiloxane-based antibody microarrays. Anal Chem 84:8635–8641. https://doi.org/10.1021/ac301756d

    Article  CAS  PubMed  Google Scholar 

  41. Wang X, Su J, Zeng D et al (2019) Gold nano-flowers (Au NFs) modified screen-printed carbon electrode electrochemical biosensor for label-free and quantitative detection of glycated hemoglobin. Talanta 201:119–125. https://doi.org/10.1016/j.talanta.2019.03.100

    Article  CAS  PubMed  Google Scholar 

  42. Çalışır M, Bakhshpour M, Yavuz H, Denizli A (2020) HbA1c detection via high-sensitive boronate based surface plasmon resonance sensor. Sens Actuators B Chem 306:127561. https://doi.org/10.1016/j.snb.2019.127561

    Article  CAS  Google Scholar 

  43. Thiruppathi M, Lee J-F, Chen CC, Ho JA (2021) A disposable electrochemical sensor designed to estimate glycated hemoglobin (HbA1c) level in whole blood. Sens Actuators B Chem 329:129119. https://doi.org/10.1016/j.snb.2020.129119

    Article  CAS  Google Scholar 

  44. Hu W-L, Jang L-S, Hsieh K-M et al (2014) Ratio of HbA1c to hemoglobin on ring-shaped interdigital electrode arrays based on impedance measurement. Sens Actuators B Chem 203:736–744. https://doi.org/10.1016/j.snb.2014.07.015

    Article  CAS  Google Scholar 

  45. Lakhera P, Chaudhary V, Singh S et al (2023) Detection of glycosylated hemoglobin on boronic acid-modified zeolitic imidazolate framework-8 nanoparticles. ACS Appl Nano Mater 6:22857–22864. https://doi.org/10.1021/acsanm.3c04054

    Article  CAS  Google Scholar 

  46. Kim D-M, Shim Y-B (2013) Disposable amperometric glycated hemoglobin sensor for the finger prick blood test. Anal Chem 85:6536–6543. https://doi.org/10.1021/ac401411y

    Article  CAS  PubMed  Google Scholar 

  47. Sridevi S, Vasu KS, Sampath S et al (2016) Optical detection of glucose and glycated hemoglobin using etched fiber Bragg gratings coated with functionalized reduced graphene oxide. J Biophotonics 9:760–769. https://doi.org/10.1002/jbio.201580156

    Article  CAS  PubMed  Google Scholar 

  48. Thea R, Onna D, Kreuzer MP, Hamer M (2019) Label-free nanostructured sensor for the simple determination of glycosylated hemoglobin (HbA1c). Sens Actuators B Chem 297:126722. https://doi.org/10.1016/j.snb.2019.126722

    Article  CAS  Google Scholar 

  49. Wu X, Meng Q, Zhang Q et al (2020) Glycoprotein fluorescent speed sensing by newly-synthesized boronic complex probe and chip supramolecular electrophoresis. Sens Actuators B Chem 309:127773. https://doi.org/10.1016/j.snb.2020.127773

    Article  CAS  Google Scholar 

  50. Dong J, Li S, Wang H et al (2013) Simple boric acid-based fluorescent focusing for sensing of glucose and glycoprotein via multipath moving supramolecular boundary electrophoresis chip. Anal Chem 85:5884–5891. https://doi.org/10.1021/ac400642d

    Article  CAS  PubMed  Google Scholar 

  51. Lin Y-H, Huang J-W, Wang D-J et al (2023) Surface modification strategy of boronic acids on glass substrates and its application for detecting glycated hemoglobin by liquid crystal-based sensors. J Mol Liq 382:121959. https://doi.org/10.1016/j.molliq.2023.121959

    Article  CAS  Google Scholar 

  52. Wang J-Y, Chou T-C, Chen L-C, Ho K-C (2015) Using poly(3-aminophenylboronic acid) thin film with binding-induced ion flux blocking for amperometric detection of hemoglobin A1c. Biosens Bioelectron 63:317–324. https://doi.org/10.1016/j.bios.2014.07.058

    Article  CAS  PubMed  Google Scholar 

  53. Han YD, Kim KR, Park YM et al (2017) Boronate-functionalized hydrogel as a novel biosensing interface for the glycated hemoglobin A1c (HbA1c) based on the competitive binding with signaling glycoprotein. Mater Sci Eng C 77:1160–1169. https://doi.org/10.1016/j.msec.2017.04.043

    Article  CAS  Google Scholar 

  54. Li H, Huo W, He M et al (2017) On-Chip determination of glycated hemoglobin with a novel boronic acid copolymer. Sens Actuators B Chem 253:542–551. https://doi.org/10.1016/j.snb.2017.06.020

    Article  CAS  Google Scholar 

  55. Chauhan N (2017) Laboratory diagnosis of HbA1c: a review. J Nanomedicine Res 5. https://doi.org/10.15406/jnmr.2017.05.00120

  56. Vučić M, Božičević S, Mesić R et al (1999) An automated immunoturbidimetric assay for HbA1c determination, pp S199–S1999

  57. John WG, Gray MR, Bates DL, Beacham JL (1993) Enzyme immunoassay–a new technique for estimating hemoglobin A1c. Clin Chem 39:663–666. https://doi.org/10.1093/clinchem/39.4.663

    Article  CAS  PubMed  Google Scholar 

  58. Gorris HH, Soukka T (2022) What digital immunoassays can learn from ambient analyte theory: a perspective. Anal Chem 94:6073–6083. https://doi.org/10.1021/acs.analchem.1c05591

    Article  CAS  PubMed  Google Scholar 

  59. Tanaka J, Ishige Y, Iwata R et al (2018) Direct detection for concentration ratio of HbA1c to total hemoglobin by using potentiometric immunosensor with simple process of denaturing HbA1c. Sens Actuators B Chem 260:396–399. https://doi.org/10.1016/j.snb.2017.12.148

    Article  CAS  Google Scholar 

  60. Chopra A, Tuteja S, Sachdeva N et al (2013) CdTe nanobioprobe based optoelectrochemical immunodetection of diabetic marker HbA1c. Biosens Bioelectron 44:132–135. https://doi.org/10.1016/j.bios.2013.01.018

    Article  CAS  PubMed  Google Scholar 

  61. Farka Z, Brandmeier JC, Mickert MJ, et al (2023) Nanoparticle‐based bioaffinity assays: from the research laboratory to the market. Adv Mater 2307653. https://doi.org/10.1002/adma.202307653

  62. Nguyen QH, Kim MI (2020) Nanomaterial-mediated paper-based biosensors for colorimetric pathogen detection. TrAC Trends Anal Chem 132:116038. https://doi.org/10.1016/j.trac.2020.116038

    Article  CAS  Google Scholar 

  63. Liu J, Li M, Man Q et al (2023) Naked-eye readout distance quantitative lateral flow assay based on the permeability changes of enzyme-catalyzed hydrogelation. Anal Chem 95:8011–8019. https://doi.org/10.1021/acs.analchem.3c00892

    Article  CAS  PubMed  Google Scholar 

  64. Li J, Fan J, Wu R et al (2022) Biomolecular surface functionalization and stabilization method to fabricate quantum dots nanobeads for accurate biosensing detection. Langmuir 38:4969–4978. https://doi.org/10.1021/acs.langmuir.2c00392

    Article  CAS  PubMed  Google Scholar 

  65. Heo NS, Kwak CH, Lee H et al (2017) Simple diagnosis of HbA1c using the dual-plasmonic platform integrated with LSPR and SERS. J Cryst Growth 469:154–159. https://doi.org/10.1016/j.jcrysgro.2016.09.039

    Article  CAS  Google Scholar 

  66. Zhao H, Qiu X, Su E et al (2022) Multiple chemiluminescence immunoassay detection of the concentration ratio of glycosylated hemoglobin A1c to total hemoglobin in whole blood samples. Anal Chim Acta 1192:339379. https://doi.org/10.1016/j.aca.2021.339379

    Article  CAS  PubMed  Google Scholar 

  67. Ahmadi A, Khoshfetrat SM, Kabiri S et al (2021) Electrochemiluminescence paper-based screen-printed electrode for HbA1c detection using two-dimensional zirconium metal-organic framework/Fe3O4 nanosheet composites decorated with Au nanoclusters. Microchim Acta 188:296. https://doi.org/10.1007/s00604-021-04959-y

    Article  CAS  Google Scholar 

  68. Li S, Zhang H, Zhu M et al (2023) Electrochemical biosensors for whole blood analysis: recent progress, challenges, and future perspectives. Chem Rev 123:7953–8039. https://doi.org/10.1021/acs.chemrev.1c00759

    Article  CAS  PubMed  Google Scholar 

  69. Molazemhosseini A, Magagnin L, Vena P, Liu C-C (2016) Single-use disposable electrochemical label-free immunosensor for detection of glycated hemoglobin (HbA1c) using differential pulse voltammetry (DPV). Sensors 16:1024. https://doi.org/10.3390/s16071024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Thapa M, Heo YS (2023) Label-free electrochemical detection of glucose and glycated hemoglobin (HbA1c). Biosens Bioelectron 221:114907. https://doi.org/10.1016/j.bios.2022.114907

    Article  CAS  PubMed  Google Scholar 

  71. Jo E-J, Mun H, Kim M-G (2016) Homogeneous immunosensor based on luminescence resonance energy transfer for glycated hemoglobin detection using upconversion nanoparticles. Anal Chem 88:2742–2746. https://doi.org/10.1021/acs.analchem.5b04255

    Article  CAS  PubMed  Google Scholar 

  72. Liu G, Khor SM, Iyengar SG, Gooding JJ (2012) Development of an electrochemical immunosensor for the detection of HbA1c in serum. Analyst 137:829–832. https://doi.org/10.1039/C2AN16034J

    Article  CAS  PubMed  Google Scholar 

  73. Liu G, Iyengar SG, Gooding JJ (2012) An electrochemical impedance immunosensor based on gold nanoparticle-modified electrodes for the detection of HbA1c in human blood. Electroanalysis 24:1509–1516. https://doi.org/10.1002/elan.201200233

    Article  CAS  Google Scholar 

  74. Kabata M, Hase E, Kimura K et al (2016) Assay of hemoglobin A1c using lectin from Aleuria aurantia. AMB Express 6:119. https://doi.org/10.1186/s13568-016-0288-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Liu A, Anfossi L, Shen L et al (2018) Non-competitive immunoassay for low-molecular-weight contaminant detection in food, feed and agricultural products: a mini-review. Trends Food Sci Technol 71:181–187. https://doi.org/10.1016/j.tifs.2017.11.014

    Article  CAS  Google Scholar 

  76. Zhang H, Li B, Liu Y et al (2022) Immunoassay technology: research progress in microcystin-LR detection in water samples. J Hazard Mater 424:127406. https://doi.org/10.1016/j.jhazmat.2021.127406

    Article  CAS  PubMed  Google Scholar 

  77. Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249:505–510. https://doi.org/10.1126/science.2200121

    Article  CAS  PubMed  Google Scholar 

  78. Ellington AD, Szostak JW (1990) In vitro selection of RNA molecules that bind specific ligands. Nature 346:818–822. https://doi.org/10.1038/346818a0

    Article  CAS  PubMed  Google Scholar 

  79. Wu Z-S, Guo M-M, Zhang S-B et al (2007) Reusable electrochemical sensing platform for highly sensitive detection of small molecules based on structure-switching signaling aptamers. Anal Chem 79:2933–2939. https://doi.org/10.1021/ac0622936

    Article  CAS  PubMed  Google Scholar 

  80. Xu R, Cheng Y, Li X et al (2022) Aptamer-based signal amplification strategies coupled with microchips for high-sensitivity bioanalytical applications: a review. Anal Chim Acta 1209:339893. https://doi.org/10.1016/j.aca.2022.339893

    Article  CAS  PubMed  Google Scholar 

  81. Modh H, Scheper T, Walter J-G (2018) Aptamer-modified magnetic beads in biosensing. Sensors 18:. https://doi.org/10.3390/s18041041

  82. Musumeci D, Platella C, Riccardi C et al (2017) Fluorescence sensing using DNA aptamers in cancer research and clinical diagnostics. Cancers 9:. https://doi.org/10.3390/cancers9120174

  83. Salek-Maghsoudi A, Vakhshiteh F, Torabi R et al (2018) Recent advances in biosensor technology in assessment of early diabetes biomarkers. Biosens Bioelectron 99:122–135. https://doi.org/10.1016/j.bios.2017.07.047

    Article  CAS  PubMed  Google Scholar 

  84. Devi P, Thakur A, Lai RY et al (2019) Progress in the materials for optical detection of arsenic in water. TrAC Trends Anal Chem 110:97–115. https://doi.org/10.1016/j.trac.2018.10.008

    Article  CAS  Google Scholar 

  85. Feng C, Dai S, Wang L (2014) Optical aptasensors for quantitative detection of small biomolecules: a review. Biosens Bioelectron 59:64–74. https://doi.org/10.1016/j.bios.2014.03.014

    Article  CAS  PubMed  Google Scholar 

  86. Almusharraf AY, Eissa S, Zourob M (2018) Truncated aptamers for total and glycated hemoglobin, and their integration into a graphene oxide-based fluorometric method for high-throughput screening for diabetes. Microchim Acta 185:256. https://doi.org/10.1007/s00604-018-2789-3

    Article  CAS  Google Scholar 

  87. Chen Z-P, Su M-L, Chen H-R et al (2022) Proximity hybridization-induced competitive rolling circle amplification to construct fluorescent dual-sensor for simultaneous evaluation of glycated and total hemoglobin. Biosens Bioelectron 202:113998. https://doi.org/10.1016/j.bios.2022.113998

    Article  CAS  PubMed  Google Scholar 

  88. Li J, Chang K-W, Wang C-H et al (2016) On-chip, aptamer-based sandwich assay for detection of glycated hemoglobins via magnetic beads. Biosens Bioelectron 79:887–893. https://doi.org/10.1016/j.bios.2016.01.029

    Article  CAS  PubMed  Google Scholar 

  89. Chang K-W, Li J, Yang C-H et al (2015) An integrated microfluidic system for measurement of glycated hemoglobin Levels by using an aptamer–antibody assay on magnetic beads. Biosens Bioelectron 68:397–403. https://doi.org/10.1016/j.bios.2015.01.027

    Article  CAS  PubMed  Google Scholar 

  90. Zhang P, Zhang Y, Xiong X et al (2020) A sensitive electrochemiluminescence immunoassay for glycosylated hemoglobin based on Ru(bpy)32+ encapsulated mesoporous polydopamine nanoparticles. Sens Actuators B Chem 321:128626. https://doi.org/10.1016/j.snb.2020.128626

    Article  CAS  Google Scholar 

  91. Zhang CG, Chang SJ, Settu K et al (2019) High-sensitivity glycated hemoglobin (HbA1c) aptasensor in rapid-prototyping surface plasmon resonance. Sens Actuators B Chem 279:267–273. https://doi.org/10.1016/j.snb.2018.09.077

    Article  CAS  Google Scholar 

  92. Chang C-C (2021) Recent advancements in aptamer-based surface plasmon resonance biosensing strategies. Biosensors 11:. https://doi.org/10.3390/bios11070233

  93. Sun D, Wu Y, Chang S-J et al (2021) Investigation of the recognition interaction between glycated hemoglobin and its aptamer by using surface plasmon resonance. Talanta 222:121466. https://doi.org/10.1016/j.talanta.2020.121466

    Article  CAS  PubMed  Google Scholar 

  94. Singh V, Nerimetla R, Yang M, Krishnan S (2017) Magnetite-quantum dot immunoarray for plasmon-coupled-fluorescence imaging of blood insulin and glycated hemoglobin. ACS Sens 2:909–915. https://doi.org/10.1021/acssensors.7b00124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Shajaripour Jaberi SY, Ghaffarinejad A, Omidinia E (2019) An electrochemical paper based nano-genosensor modified with reduced graphene oxide-gold nanostructure for determination of glycated hemoglobin in blood. Anal Chim Acta 1078:42–52. https://doi.org/10.1016/j.aca.2019.06.018

    Article  CAS  PubMed  Google Scholar 

  96. Eissa S, Almusharraf AY, Zourob M (2019) A comparison of the performance of voltammetric aptasensors for glycated haemoglobin on different carbon nanomaterials-modified screen printed electrodes. Mater Sci Eng C 101:423–430. https://doi.org/10.1016/j.msec.2019.04.001

    Article  CAS  Google Scholar 

  97. Anand A, Chen C-Y, Chen T-H et al (2021) Detecting glycated hemoglobin in human blood samples using a transistor-based nanoelectronic aptasensor. Nano Today 41:101294. https://doi.org/10.1016/j.nantod.2021.101294

    Article  CAS  Google Scholar 

  98. Li D, Fang C, Li H, Tu Y (2022) Fluorescence/electrochemiluminescence approach for instant detection of glycated hemoglobin index. Anal Biochem 659:114958. https://doi.org/10.1016/j.ab.2022.114958

    Article  CAS  PubMed  Google Scholar 

  99. Hirokawa K, Nakamura K, Kajiyama N (2004) Enzymes used for the determination of HbA 1C. FEMS Microbiol Lett 235:157–162. https://doi.org/10.1111/j.1574-6968.2004.tb09581.x

    Article  CAS  PubMed  Google Scholar 

  100. Chawla S, Pundir CS (2011) An electrochemical biosensor for fructosyl valine for glycosylated hemoglobin detection based on core–shell magnetic bionanoparticles modified gold electrode. Biosens Bioelectron 26:3438–3443. https://doi.org/10.1016/j.bios.2011.01.021

    Article  CAS  PubMed  Google Scholar 

  101. Jain U, Singh A, Kuchhal NK, Chauhan N (2016) Glycated hemoglobin biosensing integration formed on Au nanoparticle-dotted tubular TiO2 nanoarray. Anal Chim Acta 945:67–74. https://doi.org/10.1016/j.aca.2016.09.026

    Article  CAS  PubMed  Google Scholar 

  102. Zhao Q, Tang S, Fang C, Tu Y-F (2016) Titania nanotubes decorated with gold nanoparticles for electrochemiluminescent biosensing of glycosylated hemoglobin. Anal Chim Acta 936:83–90. https://doi.org/10.1016/j.aca.2016.07.015

    Article  CAS  PubMed  Google Scholar 

  103. Jain U, Chauhan N (2017) Glycated hemoglobin detection with electrochemical sensing amplified by gold nanoparticles embedded N-doped graphene nanosheet. Biosens Bioelectron 89:578–584. https://doi.org/10.1016/j.bios.2016.02.033

    Article  CAS  PubMed  Google Scholar 

  104. Jain U, Gupta S, Chauhan N (2017) Detection of glycated hemoglobin with voltammetric sensing amplified by 3D-structured nanocomposites. Int J Biol Macromol 101:896–903. https://doi.org/10.1016/j.ijbiomac.2017.03.127

    Article  CAS  PubMed  Google Scholar 

  105. Park HJ, Lee SS (2018) A quartz crystal microbalance-based biosensor for enzymatic detection of hemoglobin A1c in whole blood. Sens Actuators B Chem 258:836–840. https://doi.org/10.1016/j.snb.2017.11.170

    Article  CAS  Google Scholar 

  106. Shahbazmohammadi H, Sardari S, Omidinia E (2020) An amperometric biosensor for specific detection of glycated hemoglobin based on recombinant engineered fructosyl peptide oxidase. Int J Biol Macromol 142:855–865. https://doi.org/10.1016/j.ijbiomac.2019.10.025

    Article  CAS  PubMed  Google Scholar 

  107. Chen K-J, Wang C-H, Liao C-W, Lee C-K (2018) Recombinant fructosyl peptide oxidase preparation and its immobilization on polydopamine coating for colorimetric determination of HbA1c. Int J Biol Macromol 120:325–331. https://doi.org/10.1016/j.ijbiomac.2018.08.096

    Article  CAS  PubMed  Google Scholar 

  108. Ogawa N, Kimura T, Umehara F et al (2019) Creation of haemoglobin A1c direct oxidase from fructosyl peptide oxidase by combined structure-based site specific mutagenesis and random mutagenesis. Sci Rep 9:942. https://doi.org/10.1038/s41598-018-37806-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Wiame E, Delpierre G, Collard F, Van Schaftingen E (2002) Identification of a pathway for the utilization of the Amadori product fructoselysine in Escherichia coli *. J Biol Chem 277:42523–42529. https://doi.org/10.1074/jbc.M200863200

    Article  CAS  PubMed  Google Scholar 

  110. Wiame E, Duquenne A, Delpierre G, Van Schaftingen E (2004) Identification of enzymes acting on α-glycated amino acids in Bacillus subtilis. FEBS Lett 577:469–472. https://doi.org/10.1016/j.febslet.2004.10.049

    Article  CAS  PubMed  Google Scholar 

  111. Sakaguchi-Mikami A, Kameya M, Ferri S et al (2013) Cloning and characterization of fructosamine-6-kinase from Arthrobacter aurescens. Appl Biochem Biotechnol 170:710–717. https://doi.org/10.1007/s12010-013-0229-8

    Article  CAS  PubMed  Google Scholar 

  112. Kameya M, Sakaguchi-Mikami A, Ferri S et al (2015) Advancing the development of glycated protein biosensing technology: next-generation sensing molecules. J Diabetes Sci Technol 9:183–191. https://doi.org/10.1177/1932296814565784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Kojima K, Mikami-Sakaguchi A, Kameya M et al (2013) Substrate specificity engineering of Escherichia coli derived fructosamine 6-kinase. Biotechnol Lett 35:253–258. https://doi.org/10.1007/s10529-012-1062-9

    Article  CAS  PubMed  Google Scholar 

  114. Fortpied J, Maliekal P, Vertommen D, Van Schaftingen E (2006) Magnesium-dependent phosphatase-1 is a protein-fructosamine-6-phosphatase potentially involved in glycation repair *. J Biol Chem 281:18378–18385. https://doi.org/10.1074/jbc.M513208200

    Article  CAS  PubMed  Google Scholar 

  115. Kameya M, Tsugawa W, Yamada-Tajima M et al (2016) Electrochemical sensing system employing fructosamine 6-kinase enables glycated albumin measurement requiring no proteolytic digestion. Biotechnol J 11:797–804. https://doi.org/10.1002/biot.201500442

    Article  CAS  PubMed  Google Scholar 

  116. Sakaguchi A, Ferri S, Sode K (2005) SocA is a novel periplasmic binding protein for fructosyl amino acid. Biochem Biophys Res Commun 336:1074–1080. https://doi.org/10.1016/j.bbrc.2005.08.230

    Article  CAS  PubMed  Google Scholar 

  117. Sakaguchi-Mikami A, Ferri S, Katayama S et al (2013) Identification and functional analysis of fructosyl amino acid-binding protein from Gram-positive bacterium Arthrobacter sp. J Appl Microbiol 114:1449–1456. https://doi.org/10.1111/jam.12152

    Article  CAS  PubMed  Google Scholar 

  118. Hatada M, Wilson E, Khanwalker M et al (2022) Current and future prospective of biosensing molecules for point-of-care sensors for diabetes biomarker. Sens Actuators B Chem 351:130914. https://doi.org/10.1016/j.snb.2021.130914

    Article  CAS  Google Scholar 

  119. Wolf A, Shaw EW, Oh B-H et al (1995) Structure/function analysis of the periplasmic histidine-binding protein: mutations decreasing ligand binding alter the properties of the conformational change and of the closed form (∗). J Biol Chem 270:16097–16106. https://doi.org/10.1074/jbc.270.27.16097

    Article  CAS  PubMed  Google Scholar 

  120. De Lorimier RM, Smith JJ, Dwyer MA et al (2002) Construction of a fluorescent biosensor family. Protein Sci 11:2655–2675. https://doi.org/10.1110/ps.021860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Sakaguchi A, Ferri S, Tsugawa W, Sode K (2007) Novel fluorescent sensing system for α-fructosyl amino acids based on engineered fructosyl amino acid binding protein. Sel Pap Ninth World Congr Biosens Tor Can 10 - 12 May 2006 22:1933–1938. https://doi.org/10.1016/j.bios.2006.08.022

  122. Hatada M, Tran T-T, Tsugawa W et al (2019) Affinity sensor for haemoglobin A1c based on single-walled carbon nanotube field-effect transistor and fructosyl amino acid binding protein. Biosens Bioelectron 129:254–259. https://doi.org/10.1016/j.bios.2018.09.069

    Article  CAS  PubMed  Google Scholar 

  123. Yarman A, Kurbanoglu S, Zebger I, Scheller FW (2021) Simple and robust: the claims of protein sensing by molecularly imprinted polymers. Sens Actuators B Chem 330:129369. https://doi.org/10.1016/j.snb.2020.129369

    Article  CAS  Google Scholar 

  124. Haupt K, Mosbach K (2000) Molecularly imprinted polymers and their use in biomimetic sensors. Chem Rev 100:2495–2504. https://doi.org/10.1021/cr990099w

    Article  CAS  PubMed  Google Scholar 

  125. Ahmad OS, Bedwell TS, Esen C et al (2019) Molecularly imprinted polymers in electrochemical and optical sensors. Trends Biotechnol 37:294–309. https://doi.org/10.1016/j.tibtech.2018.08.009

    Article  CAS  PubMed  Google Scholar 

  126. Hasseb AA, Abdel Ghani din NT, Shehab OR, El Nashar RM (2022) Application of molecularly imprinted polymers for electrochemical detection of some important biomedical markers and pathogens. Curr Opin Electrochem 31:100848. https://doi.org/10.1016/j.coelec.2021.100848

    Article  CAS  Google Scholar 

  127. Mayes A, Whitcombe M (2005) Synthetic strategies for the generation of molecularly imprinted organic polymers. Adv Drug Deliv Rev 57:1742–1778. https://doi.org/10.1016/j.addr.2005.07.011

    Article  CAS  PubMed  Google Scholar 

  128. Wulff G, Vesper W, Grobe-Einsler R, Sarhan A (1977) Enzyme-analogue built polymers, 4. On the synthesis of polymers containing chiral cavities and their use for the resolution of racemates. Makromol Chem 178:2799–2816. https://doi.org/10.1002/macp.1977.021781004

    Article  CAS  Google Scholar 

  129. Takano E, Taguchi Y, Ooya T, Takeuchi T (2012) Dummy template-imprinted polymers for bisphenol A prepared using a Schiff base-type template molecule with post-imprinting oxidation. Anal Lett 45:1204–1213. https://doi.org/10.1080/00032719.2012.673099

    Article  CAS  Google Scholar 

  130. Gong H, Hajizadeh S, Jiang L et al (2018) Dynamic assembly of molecularly imprinted polymer nanoparticles. J Colloid Interface Sci 509:463–471. https://doi.org/10.1016/j.jcis.2017.09.046

    Article  CAS  PubMed  Google Scholar 

  131. Pandey I, Tiwari JD (2019) A novel dual imprinted conducting nanocubes based flexible sensor for simultaneous detection of hemoglobin and glycated haemoglobin in gestational diabetes mellitus patients. Sens Actuators B Chem 285:470–478. https://doi.org/10.1016/j.snb.2019.01.093

    Article  CAS  Google Scholar 

  132. Yang Y, Dong H, Yin H et al (2023) Controllable preparation of silver-doped hollow carbon spheres and its application as electrochemical probes for determination of glycated hemoglobin. Bioelectrochemistry 152:108450

    Article  CAS  PubMed  Google Scholar 

  133. Li F, Li X, Su J et al (2021) A strategy of utilizing Cu2+-mediating interaction to prepare magnetic imprinted polymers for the selective detection of celastrol in traditional Chinese medicines. Talanta 231:122339. https://doi.org/10.1016/j.talanta.2021.122339

    Article  CAS  PubMed  Google Scholar 

  134. Smolinska-Kempisty K, Guerreiro A, Czulak J, Piletsky S (2019) Negative selection of MIPs to create high specificity ligands for glycated haemoglobin. Sens Actuators B Chem 301:126967. https://doi.org/10.1016/j.snb.2019.126967

    Article  CAS  Google Scholar 

  135. Mahobiya SK, Balayan S, Chauhan N et al (2022) Tungsten disulfide decorated screen-printed electrodes for sensing ofglycated hemoglobin. ACS Omega 7:34676–34684. https://doi.org/10.1021/acsomega.2c04926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Sunil Kumar M, Nidhi C, Sapna B et al (2022) Developing a sensing platform based on molecular imprinting of HbA1c on Fe3O4 nanoparticle modified screen-printed electrode. Biointerface Res Appl Chem 13:228. https://doi.org/10.33263/BRIAC133.228

    Article  Google Scholar 

  137. Caserta G, Zhang X, Yarman A et al (2021) Insights in electrosynthesis, target binding, and stability of peptide-imprinted polymer nanofilms. Electrochim Acta 381:138236. https://doi.org/10.1016/j.electacta.2021.138236

    Article  CAS  Google Scholar 

  138. Zhang Y, Xie Y, Shi H et al (2021) Facile way to prepare a porous molecular imprinting lock for specifically recognizing oxytetracyclin based on coordination. Anal Chem 93:4536–4541. https://doi.org/10.1021/acs.analchem.0c04959

    Article  CAS  PubMed  Google Scholar 

  139. Ye L, Mosbach K (2008) Molecular imprinting: synthetic materials as substitutes for biological antibodies and receptors. Chem Mater 20:859–868. https://doi.org/10.1021/cm703190w

    Article  CAS  Google Scholar 

  140. Wan L, Chen Z, Huang C, Shen X (2017) Core–shell molecularly imprinted particles. TrAC Trends Anal Chem 95:110–121. https://doi.org/10.1016/j.trac.2017.08.010

    Article  CAS  Google Scholar 

  141. Wackerlig J, Lieberzeit PA (2015) Molecularly imprinted polymer nanoparticles in chemical sensing – synthesis, characterisation and application. Sens Actuators B Chem 207:144–157. https://doi.org/10.1016/j.snb.2014.09.094

    Article  CAS  Google Scholar 

  142. Ahmad R, Griffete N, Lamouri A et al (2015) Nanocomposites of gold nanoparticles@molecularly imprinted polymers: chemistry, processing, and applications in sensors. Chem Mater 27:5464–5478. https://doi.org/10.1021/acs.chemmater.5b00138

    Article  CAS  Google Scholar 

  143. Bazin I, Tria SA, Hayat A, Marty J-L (2017) New biorecognition molecules in biosensors for the detection of toxins. Biosens Bioelectron 87:285–298. https://doi.org/10.1016/j.bios.2016.06.083

    Article  CAS  PubMed  Google Scholar 

  144. Bedwell TS, Whitcombe MJ (2016) Analytical applications of MIPs in diagnostic assays: future perspectives. Anal Bioanal Chem 408:1735–1751. https://doi.org/10.1007/s00216-015-9137-9

    Article  CAS  PubMed  Google Scholar 

  145. Tarannum N, Hendrickson OD, Khatoon S et al (2020) Molecularly imprinted polymers as receptors for assays of antibiotics. Crit Rev Anal Chem 50:291–310. https://doi.org/10.1080/10408347.2019.1626697

    Article  CAS  PubMed  Google Scholar 

  146. Becskereki G, Horvai G, Tóth B (2021) The selectivity of molecularly imprinted polymers. Polymers 13:. https://doi.org/10.3390/polym13111781

  147. Dong P-T, Lin H, Huang K-C, Cheng J-X (2019) Label-free quantitation of glycated hemoglobin in single red blood cells by transient absorption microscopy and phasor analysis. Sci Adv 5:eaav0561. https://doi.org/10.1126/sciadv.aav0561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Jiao D, Zhang R, Zhang H et al (2024) Rapid detection of glycosylated hemoglobin levels by a microchip liquid chromatography system in gradient elution mode. Anal Chim Acta 1288:342186. https://doi.org/10.1016/j.aca.2023.342186

    Article  CAS  PubMed  Google Scholar 

  149. Sekyonda Z, An R, Avanaki A et al (2023) A novel approach for glycosylated hemoglobin testing using microchip affinity electrophoresis. IEEE Trans Biomed Eng 70:1473–1480. https://doi.org/10.1109/TBME.2022.3218501

    Article  PubMed  PubMed Central  Google Scholar 

  150. Campbell L, Pepper T, Shipman K (2019) HbA1c: a review of non-glycaemic variables. J Clin Pathol 72:12. https://doi.org/10.1136/jclinpath-2017-204755

    Article  CAS  PubMed  Google Scholar 

  151. Mostafa SA, Davies MJ, Srinivasan BT et al (2010) Should glycated haemoglobin (HbA1c) be used to detect people with type 2 diabetes mellitus and impaired glucose regulation? Postgrad Med J 86:656–662. https://doi.org/10.1136/pgmj.2009.091215

    Article  CAS  PubMed  Google Scholar 

  152. Oikonomidis IL, Tsouloufi TK, Kritsepi-Konstantinou M, Soubasis N (2022) The effect of age and sex on glycated hemoglobin in dogs. J Vet Diagn Invest 34:331–333. https://doi.org/10.1177/10406387211065046

    Article  CAS  PubMed  Google Scholar 

  153. Wen D-M, Xu S-N, Wang W-J, Zhang X-M, Suo M-H, Zhang D-C (2017) Evaluation of the interference of hemoglobin variant J-Bangkok on glycated hemoglobin (HbA1c) measurement by five different methods. Exp Clin Endocrinol Diabetes 125:655–660. https://doi.org/10.1055/s-0043-118535

    Article  CAS  PubMed  Google Scholar 

  154. Little RR, Rohlfing C, Sacks DB (2019) The National Glycohemoglobin Standardization Program: over 20 years of improving hemoglobin A1c measurement. Clin Chem 65:839–848. https://doi.org/10.1373/clinchem.2018.296962

    Article  CAS  PubMed  Google Scholar 

  155. Razi F, Nasli Esfahani E, Rahnamaye Farzami M et al (2015) Effect of the different assays of HbA1c on diabetic patients monitoring. J Diabetes Metab Disord 14:65. https://doi.org/10.1186/s40200-015-0193-7

    Article  PubMed  PubMed Central  Google Scholar 

  156. Słowińska-Solnica K, Pawlica-Gosiewska D, Gawlik K et al (2018) Boronate affinity chromatography accurately measures HbA1c also in patients with end-stage renal disease - performance evaluation of the A1c HPLC analyzer. Clin Lab 64(9):1451–1455

    PubMed  Google Scholar 

  157. Kobyliak N, Conte C, Cammarota G et al (2016) Probiotics in prevention and treatment of obesity: a critical view. Nutr Metab 13:14. https://doi.org/10.1186/s12986-016-0067-0

    Article  CAS  Google Scholar 

  158. Mongia SK, Little RR, Rohlfing CL et al (2008) Effects of hemoglobin C and S Traits on the results of 14 commercial glycated hemoglobin assays. Am J Clin Pathol 130:136–140. https://doi.org/10.1309/1YU0D34VJKNUCGT1

    Article  PubMed  Google Scholar 

  159. Zechmeister B, Erden T, Kreutzig B et al (2022) Analytical interference of 33 different hemoglobin variants on HbA1c measurements comparing high-performance liquid chromatography with whole blood enzymatic assay: a multi-center study. Clin Chim Acta 531:145–151. https://doi.org/10.1016/j.cca.2022.03.028

    Article  CAS  PubMed  Google Scholar 

  160. Zheng H, Lin H, Chen X et al (2020) Development of boronate affinity-based magnetic composites in biological analysis: advances and future prospects. TrAC Trends Anal Chem 129:115952. https://doi.org/10.1016/j.trac.2020.115952

    Article  CAS  Google Scholar 

  161. Tommasone S, Allabush F, Tagger YK et al (2019) The challenges of glycan recognition with natural and artificial receptors. Chem Soc Rev 48:5488–5505. https://doi.org/10.1039/C8CS00768C

    Article  CAS  PubMed  Google Scholar 

  162. Qin X, Zhang Z, Shao H et al (2020) Boronate affinity material-based sensors for recognition and detection of glycoproteins. Analyst 145:7511–7527. https://doi.org/10.1039/D0AN01410A

    Article  CAS  PubMed  Google Scholar 

  163. Chen M, Qileng A, Liang H et al (2023) Advances in immunoassay-based strategies for mycotoxin detection in food: from single-mode immunosensors to dual-mode immunosensors. Compr Rev Food Sci Food Saf 22:1285–1311. https://doi.org/10.1111/1541-4337.13111

    Article  CAS  PubMed  Google Scholar 

  164. Liu A, Xu S, Deng H, Wang X (2016) A new electrochemical HbA1c biosensor based on flow injection and screen-printed electrode. Int J Electrochem Sci 11:3086–3094. https://doi.org/10.1016/S1452-3981(23)16166-9

    Article  CAS  Google Scholar 

  165. Arshavsky-Graham S, Urmann K, Salama R et al (2020) Aptamers vs. antibodies as capture probes in optical porous silicon biosensors. Analyst 145:4991–5003. https://doi.org/10.1039/D0AN00178C

    Article  CAS  PubMed  Google Scholar 

  166. Shin W-R, Ahn G, Lee J-P et al (2023) Recent advances in engineering aptamer-based sensing and recovery of heavy metals and rare earth elements for environmental sustainability. Chem Eng J 472:144742. https://doi.org/10.1016/j.cej.2023.144742

    Article  CAS  Google Scholar 

  167. Sekhon SS, Kim S-G, Lee S-H et al (2013) Advances in pathogen-associated molecules detection using aptamer based biosensors. Mol Cell Toxicol 9:311–317. https://doi.org/10.1007/s13273-013-0039-7

    Article  CAS  Google Scholar 

  168. Gold L (2006) Epilogue: a personal perspective: aptamers after 15 years. In: The Aptamer Handbook. 461–469

  169. Hasanzadeh M, Shadjou N, De La Guardia M (2017) Aptamer-based assay of biomolecules: recent advances in electro-analytical approach. TrAC Trends Anal Chem 89:119–132. https://doi.org/10.1016/j.trac.2017.02.003

    Article  CAS  Google Scholar 

  170. Hassani S, Momtaz S, Vakhshiteh F et al (2017) Biosensors and their applications in detection of organophosphorus pesticides in the environment. Arch Toxicol 91:109–130. https://doi.org/10.1007/s00204-016-1875-8

    Article  CAS  PubMed  Google Scholar 

  171. Kim W, Lee S, Sung BH et al (2024) Cell-free systems and genetic biosensors for accelerating enzyme and pathway prototyping. Curr Opin Syst Biol 37:100501. https://doi.org/10.1016/j.coisb.2023.100501

    Article  CAS  Google Scholar 

  172. Melo RLF, Neto FS, Dari DN et al (2024) A comprehensive review on enzyme-based biosensors: advanced analysis and emerging applications in nanomaterial-enzyme linkage. Int J Biol Macromol 264:130817. https://doi.org/10.1016/j.ijbiomac.2024.130817

    Article  CAS  PubMed  Google Scholar 

  173. Zhao Y, Yavari K, Liu J (2022) Critical evaluation of aptamer binding for biosensor designs. TrAC Trends Anal Chem 146:116480. https://doi.org/10.1016/j.trac.2021.116480

    Article  CAS  Google Scholar 

  174. Lofgreen JE, Ozin GA (2014) Controlling morphology and porosity to improve performance of molecularly imprinted sol–gel silica. Chem Soc Rev 43:911–933. https://doi.org/10.1039/C3CS60276A

    Article  CAS  PubMed  Google Scholar 

  175. BelBruno JJ (2019) Molecularly imprinted polymers. Chem Rev 119:94–119. https://doi.org/10.1021/acs.chemrev.8b00171

    Article  CAS  PubMed  Google Scholar 

  176. Mamipour Z, Nematollahzadeh A, Kompany-Zareh M (2021) Molecularly imprinted polymer grafted on paper and flat sheet for selective sensing and diagnosis: a review. Microchim Acta 188:279. https://doi.org/10.1007/s00604-021-04930-x

    Article  CAS  Google Scholar 

  177. Ali GK, Omer KM (2022) Molecular imprinted polymer combined with aptamer (MIP-aptamer) as a hybrid dual recognition element for bio(chemical) sensing applications. Review Talanta 236:122878. https://doi.org/10.1016/j.talanta.2021.122878

    Article  CAS  PubMed  Google Scholar 

  178. Ozcelikay G, Kaya SI, Ozkan E et al (2022) Sensor-based MIP technologies for targeted metabolomics analysis. TrAC Trends Anal Chem 146:116487. https://doi.org/10.1016/j.trac.2021.116487

    Article  CAS  Google Scholar 

Download references

Funding

This project was supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 82204513), the Natural Science Foundation of Sichuan Province, China (Grant No. 2023NSFSC1673), the Innovation Guidance Foundation of the Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province (Grant No. SCU2023D005), and the Scientific Research Staring Foundation of Sichuan University (Grant No. YJ202165).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dapeng Li.

Ethics declarations

Ethical approval

This research did not involve human or animal samples.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Yang Su and Chengen Xia are co-first authors and both contributed equally.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, Y., Xia, C., Zhang, H. et al. Emerging biosensor probes for glycated hemoglobin (HbA1c) detection. Microchim Acta 191, 300 (2024). https://doi.org/10.1007/s00604-024-06380-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-024-06380-7

Keywords

Navigation