Skip to main content

Advertisement

Log in

Coumarin-Rhodamine Hybrids—Novel Probes for the Optical Measurement of Viscosity and Polarity

  • SHORT COMMUNICATION
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

A comprehensive systematic study of absorption and fluorescence properties in solvents of varying viscosity and polarity of three novel and red-emitting coumarin-rhodamine hybrid derivatives with differences in the rigidity of their substituents is presented. This includes ethanol-polyethylene glycol, toluene-polyethylene glycol, and toluene-paraffin mixtures. Moreover, protonation-induced effects on the spectroscopic properties are studied. A viscosity-induced emission enhancement was observed for all coumarin-rhodamine hybrid derivatives. MCR2 bearing a julolidine donor showed the expected low sensitivity to viscosity whereas MCR3 with its freely rotatable diphenylamino substituent revealed a particularly pronounced sensitivity to this parameter. Moreover, MCR2 shows an enhancement in emission in the open, i.e., protonated form in conjunction with a largely Stokes shift fluorescence in the deep red spectral region. This enables the application of these dyes as viscosity sensors and as far red emitting pH-sensitive probes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Würthner F, Ahmed S, Thalacker C, Debaerdemaeker T (2002) Core-substituted naphthalene bisimides: new fluorophors with tunable emission wavelength for FRET studies. Chem A Eur J 8:4742–4750. doi:10.1002/1521-3765(20021018)8:20<4742::AID-CHEM4742>3.0.CO;2-L

    Article  Google Scholar 

  2. Serin J, Schultze X, Adronov A, Fre JMJ (2002) Synthesis and study of the absorption and luminescence properties of laser dyes 5396–5404

  3. Arunkumar E, Ajayaghosh A, Daub J (2005) Selective calcium ion sensing with a bichromophoric squaraine foldamer. J Am Chem Soc 127:3156–3164. doi:10.1021/ja045760e

    Article  CAS  PubMed  Google Scholar 

  4. Xiang X, Wang D, Guo Y et al (2013) Photophysical study of a polyoxo ethylene linked naphthalene-based fluorescent chemosensor for Mg2+ and Ca2+ detection. Photochem Photobiol Sci 12:1232–1241. doi:10.1039/c3pp00007a

    Article  CAS  PubMed  Google Scholar 

  5. Langhals H, Poxleitner S, Krotz O et al. (2008) FRET in orthogonally arranged chromophores. European J Org Chem 4559–4562. doi:10.1002/ejoc.200800451

  6. Tulyakova E, Delbaere S, Fedorov Y et al (2011) Multimodal metal cation sensing with bis(macrocyclic) dye. Chem A Eur J 17:10752–10762. doi:10.1002/chem.201100998

    Article  CAS  Google Scholar 

  7. Bañuelos J, Arroyo-Córdoba IJ, Valois-Escamilla I et al (2011) Modulation of the photophysical properties of BODIPY dyes by substitution at their meso position. RSC Adv 1:677. doi:10.1039/c1ra00020a

    Article  Google Scholar 

  8. Kabatc J, Zadruyńska A, Czech Z, Kowalczyk A (2012) The synthesis, spectroscopic and electrochemical properties, and application of new dyeing photoinitiator systems for acrylate monomers polymerization. Dye Pigment 92:724–731. doi:10.1016/j.dyepig.2011.06.010

    Article  CAS  Google Scholar 

  9. Kollar J, Chmela S, Hrdlovic P (2013) Spectral properties of bichromophoric probes based on pyrene and benzothioxanthene in solution and in polymer matrices. J Photochem Photobiol A Chem 270:28–36. doi:10.1016/j.jphotochem.2013.06.017

    Article  CAS  Google Scholar 

  10. Prostota Y, Berthet J, Delbaere S, Coelho PJ (2013) Bichromophoric dye derived from benzo[1,3]oxazine system. Dye Pigm 96:569–573. doi:10.1016/j.dyepig.2012.09.017

    Article  CAS  Google Scholar 

  11. Warnan J, Gardner J, Le Pleux L et al (2014) Multichromophoric sensitizers based on squaraine for NiO based dye-sensitized solar cells. J Phys Chem C 118:103–113. doi:10.1021/jp408900x

    Article  CAS  Google Scholar 

  12. Maroncelli (1991) Comment on ‘Dynamic stokes shifl in coumarin: is it only relaxati? J Phys Chem 95:1012–1014

    Article  CAS  Google Scholar 

  13. Jagtap AR, Satam VS, Rajule RN, Kanetkar VR (2009) The synthesis and characterization of novel coumarin dyes derived from 1,4-diethyl-1,2,3,4-tetrahydro-7-hydroxyquinoxalin-6-carboxaldehyde. Dye Pigm 82:84–89. doi:10.1016/j.dyepig.2008.11.007

    Article  CAS  Google Scholar 

  14. Key JA, Koh S, Timerghazin QK et al (2009) Photophysical characterization of triazole-substituted coumarin fluorophores. Dye Pigm 82:196–203. doi:10.1016/j.dyepig.2009.01.001

    Article  CAS  Google Scholar 

  15. Zhou S, Jia J, Gao J et al (2010) The one-pot synthesis and fluorimetric study of 3-(2′-benzothiazolyl)coumarins. Dye Pigm 86:123–128. doi:10.1016/j.dyepig.2009.12.005

    Article  CAS  Google Scholar 

  16. Xie L, Chen Y, Wu W et al (2012) Fluorescent coumarin derivatives with large stokes shift, dual emission and solid state luminescent properties: An experimental and theoretical study. Dye Pigm 92:1361–1369. doi:10.1016/j.dyepig.2011.09.023

    Article  CAS  Google Scholar 

  17. Resch-Genger U, Grabolle M, Cavaliere-Jaricot S et al (2008) Quantum dots versus organic dyes as fluorescent labels. Nat Methods 5:763–775. doi:10.1038/nmeth.1248

    Article  CAS  PubMed  Google Scholar 

  18. Zheng H, Zhan X-Q, Bian Q-N, Zhang X-J (2012) Advances in modifying of fluorescein and rhodamine fluorophores as fluorescent chemosensors. Chem Commun 429–447. doi:10.1039/c2cc35997a

  19. Sun YQ, Liu J, Lv X et al (2012) Rhodamine-inspired far-red to near-infrared dyes and their application as fluorescence probes. Angew Chem Int Ed 51:7634–7636. doi:10.1002/anie.201202264

    Article  CAS  Google Scholar 

  20. Chen X, Pradhan T, Wang F et al (2012) Fluorescent chemosensors based on spiroring-opening of xanthenes and related derivatives. Chem Rev 112:1910–1956. doi:10.1021/cr200201z

    Article  CAS  PubMed  Google Scholar 

  21. Shi W, Ma H (2012) Spectroscopic probes with changeable π-conjugated systems. Chem Commun 48:8732. doi:10.1039/c2cc33366j

    Article  CAS  Google Scholar 

  22. Yuan L, Lin W, Zheng K et al. (2013) Far-red to near infrared analyte-responsive fluorescent probes based on organic fluorophore platforms for fluorescence imaging. Chem Soc Rev 622–661. doi:10.1039/c2cs35313j

  23. Summerhayes IC, Lampidis TJ, Bernal SD et al (1982) Unusual retention of rhodamine 123 by mitochondria in muscle and carcinoma cells. Proc Natl Acad Sci U S A 79:5292–5296. doi:10.1073/pnas.79.17.5292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Johnson LV, Walsh ML, Chen LB (1980) Localization of mitochondria in living cells with rhodamine 123. Proc Natl Acad Sci U S A 77:990–994. doi:10.1073/pnas.77.2.990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kim HN, Ren WX, Kim JS, Yoon J (2012) Fluorescent and colorimetric sensors for detection of lead, cadmium, and mercury ions. Chem Soc Rev 41:3210. doi:10.1039/c1cs15245a

    Article  CAS  PubMed  Google Scholar 

  26. Fan J, Hu M, Zhan P, Peng X (2013) Energy transfer cassettes based on organic fluorophores: construction and applications in ratiometric sensing. Chem Soc Rev. doi:10.1039/c2cs35273g

    Google Scholar 

  27. Chen J, Liu W, Zhou B et al (2013) Coumarin- and rhodamine-fused deep red fluorescent dyes: synthesis, photophysical properties, and bioimaging in vitro. J Org Chem 78:6121–6130. doi:10.1021/jo400783x

    Article  CAS  PubMed  Google Scholar 

  28. Wagner BD (2009) The use of coumarins as environmentally-sensitive fluorescent probes of heterogeneous inclusion systems. Molecules 14:210–237. doi:10.3390/molecules14010210

    Article  CAS  PubMed  Google Scholar 

  29. Jadhav AG, Kothavale S, Sekar N (2017) Red emitting triphenylamine based rhodamine analogous with enhanced Stokes shift and viscosity sensitive emission. Dye Pigm 138:56–67. doi:10.1016/j.dyepig.2016.11.021

    Article  CAS  Google Scholar 

  30. Kothavale S, Jadhav AG, Sekar N (2017) Deep red emitting triphenylamine based coumarin-rhodamine hybrids with large Stokes shift and viscosity sensing: synthesis, photophysical properties and DFT studies of their spirocyclic and open forms. Dye Pigm 137:329–341. doi:10.1016/j.dyepig.2016.11.010

    Article  CAS  Google Scholar 

  31. Oster G, Nishijima Y (1956) Fluorescence and internal rotation†¯: their dependence on viscosity of the medium. J Am Chem Soc 78:1581. doi:10.1021/ja01589a021

    Article  CAS  Google Scholar 

  32. Sharafy S (1966) Viscosity dependence of fluorescence quantum yields. 1164:4119–4125. doi:10.1021/ja00746a004

  33. Tredwell CJ (1980) Viscosity dependent internal conversion in the rhodamine dye, fast acid violet 2R. J Chem Soc Faraday Trans II 76:1627–1637. doi:10.1039/f29807601638

    Article  CAS  Google Scholar 

  34. Jones G, Jackson WR, Kanoktanaporn S, Halpern AM (1980) Solvent effects on photophysical parameters for coumarin laser dyes. Opt Commun 33:315–320. doi:10.1016/0030-4018(80)90252-7

    Article  CAS  Google Scholar 

  35. Loutfy RO (1986) Fluorescence probes for polymer free-volume. Pure Appl Chem 58:1239–1248. doi:10.1351/pac198658091239

    Article  CAS  Google Scholar 

  36. Haidekker MA, Brady TP, Lichlyter D, Theodorakis EA (2006) A ratiometric fluorescent viscosity sensor. J Am Chem Soc 128:398–399. doi:10.1021/ja056370a

    Article  PubMed  Google Scholar 

  37. Haidekker MA, Brady TP, Lichlyter D, Theodorakis EA (2005) Effects of solvent polarity and solvent viscosity on the fluorescent properties of molecular rotors and related probes. Bioorg Chem 33:415–425. doi:10.1016/j.bioorg.2005.07.005

    Article  CAS  PubMed  Google Scholar 

  38. Haidekker MA, Theodorakis EA (2010) Environment-sensitive behavior of fluorescent molecular rotors. J Biol Eng 4:11. doi:10.1186/1754-1611-4-11

    Article  PubMed  PubMed Central  Google Scholar 

  39. Phatangare KR, Lanke SK, Sekar N (2014) Fluorescent coumarin derivatives with viscosity sensitive emission - synthesis, photophysical properties and computational studies. J Fluoresc 24:1263–1274. doi:10.1007/s10895-014-1410-3

    Article  CAS  PubMed  Google Scholar 

  40. Deliconstantinos G, Villiotou V, Stavrides JC (1995) Modulation of particulate nitric-oxide synthase activity and peroxynitrite synthesis in cholesterol-enriched endothelial-cell membranes. Biochem Pharmacol 49:1589–1600. doi:10.1016/0006-2952(95)00094-G

    Article  CAS  PubMed  Google Scholar 

  41. Gleason MM, Medow MS, Tulenko TN (1991) Excess membrane cholesterol alters calcium movements, cytosolic calcium levels, and membrane fluidity in arterial smooth muscle cells. Circ Res 69:216–227. doi:10.1161/01.RES.69.1.216

    Article  CAS  PubMed  Google Scholar 

  42. Nadiv O, Shinitzky M, Manu H et al (1994) Elevated protein-tyrosine-phosphatase activity and increased membrane viscosity are associated with impaired activation of the insulin-receptor kinase in old rats. Biochem J 298:443–450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Osterode W, Holler C, Ulberth F (1996) Nutritional antioxidants, red cell membrane fluidity and blood viscosity in type 1 (insulin dependent) diabetes mellitus. Diabet Med 13:1044–1050. doi:10.1002/(SICI)1096-9136

    Article  CAS  PubMed  Google Scholar 

  44. Shinitzky M (1984) Membrane fluidity and cellular functions. In: Shinitzky M (ed) Physiology of membrane fluidity. CRC Press, Boca Raton, pp 1–52

  45. Resch-Genger U, DeRose PC (2012) Characterization of photoluminescence measuring systems (IUPAC technical report). Pure Appl Chem 84:1815–1835. doi:10.1351/PAC-REP-10-07-07

    Article  CAS  Google Scholar 

  46. Würth C, Pauli J, Lochmann C et al (2012) Integrating sphere setup for the traceable measurement of absolute photoluminescence quantum yields in the near infrared. Anal Chem 84:1345–1352. doi:10.1021/ac2021954

    Article  PubMed  Google Scholar 

  47. Lakowics JR (1983) Principles of fluorescence spectroscopy. Springer, New York

  48. Resch-Genger U, Li YQ, Bricks JL et al (2006) Bifunctional charge transfer operated fluorescent probes with acceptor and donor receptors. 1. Biphenyl-type sensor molecules with protonation-induced anti-energy gap rule behavior. J Phys Chem A 110:10956–10971. doi:10.1021/jp062010d

    Article  CAS  PubMed  Google Scholar 

  49. Grabowski ZR, Rotkiewicz K, Rettig W (2003) Structural changes accompanying intramolecular electron transfer: focus on twisted intramolecular charge-transfer states and structures. Chem Rev 103:3899–4031. doi:10.1021/cr940745l

    Article  PubMed  Google Scholar 

  50. Seedher N, Bhatia S (2003) Solubility enhancement of Cox-2 inhibitors using various solvent systems. AAPS PharmSciTech 4:1–9

    Article  Google Scholar 

  51. Telore RD, Sekar N (2016) Carbazole-containing push-pull chromophore with viscosity and polarity sensitive emissions: synthesis and photophysical properties. Dye Pigm 129:1–8. doi:10.1016/j.dyepig.2016.02.012

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Amol Jadhav is thankful to UGC for UGC-SRF fellowship as well as DST-DAAD, India for Indo - German Academic Exchange Service.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nagaiyan Sekar.

Additional information

Norman Scholz and Amol Jadhav contributed equally.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 465 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Scholz, N., Jadhav, A., Shreykar, M. et al. Coumarin-Rhodamine Hybrids—Novel Probes for the Optical Measurement of Viscosity and Polarity. J Fluoresc 27, 1949–1956 (2017). https://doi.org/10.1007/s10895-017-2165-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-017-2165-4

Keywords

Navigation